Photo AI

15. (a) Solve the equation sin 2x² + 6cos x² = 0 for 0° < x < 360° - Scottish Highers Maths - Question 15 - 2019

Question icon

Question 15

15.-(a)-Solve-the-equation-sin-2x²-+-6cos-x²-=-0-for-0°-<-x-<-360°-Scottish Highers Maths-Question 15-2019.png

15. (a) Solve the equation sin 2x² + 6cos x² = 0 for 0° < x < 360°. (b) Hence solve sin 4x² + 6cos 2x² = 0 for 0° < x < 360°.

Worked Solution & Example Answer:15. (a) Solve the equation sin 2x² + 6cos x² = 0 for 0° < x < 360° - Scottish Highers Maths - Question 15 - 2019

Step 1

Solve the equation sin 2x² + 6cos x² = 0 for 0° < x < 360°.

96%

114 rated

Answer

To solve the equation, we start by substituting the double angle formula for sine into the equation:

extsin(2x)=2extsin(x)extcos(x) ext{sin}(2x) = 2 ext{sin}(x) ext{cos}(x)

Substituting this gives:

2extsin(x)extcos(x)+6extcos(x)=02 ext{sin}(x) ext{cos}(x) + 6 ext{cos}(x) = 0

Factoring out the common term:

extcos(x)(2extsin(x)+6)=0 ext{cos}(x)(2 ext{sin}(x) + 6) = 0

This gives us two equations to solve:

  1. extcos(x)=0 extsolutions:x=90°,270° ext{cos}(x) = 0\ ext{solutions: } x = 90°, 270°

  2. 2extsin(x)+6=0 extsin(x)=3 extnosolutions2 ext{sin}(x) + 6 = 0\ ext{sin}(x) = -3\ ext{no solutions}

Thus, the only valid solutions from part (a) are:

  • x=90°x = 90°
  • x=270°x = 270°

Step 2

Hence solve sin 4x² + 6cos 2x² = 0 for 0° < x < 360°.

99%

104 rated

Answer

Using the double angle formula for cosine, we have:

extcos(2x)=2extcos2(x)1 ext{cos}(2x) = 2 ext{cos}^2(x) - 1

And substituting we get:

extsin(4x)+6(2extcos2(x)1)=0 ext{sin}(4x) + 6(2 ext{cos}^2(x) - 1) = 0

From part (a), we know:

extsin(4x)=0 extsolutions:0°,180°ext(andtakingintoaccounttheinitialconditions) ext{sin}(4x) = 0\ ext{solutions: } 0°, 180° ext{ (and taking into account the initial conditions)}

Thus the valid solutions for part (b) are:

  • x=45°,135°,225°,315°x = 45°, 135°, 225°, 315°

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;