Photo AI

Triangles ABC and ADE are both right angled - Scottish Highers Maths - Question 13 - 2019

Question icon

Question 13

Triangles-ABC-and-ADE-are-both-right-angled-Scottish Highers Maths-Question 13-2019.png

Triangles ABC and ADE are both right angled. Angles p and q are shown in the diagram. (a) Determine the value of (i) cos p (ii) cos q. (b) Hence determine the value... show full transcript

Worked Solution & Example Answer:Triangles ABC and ADE are both right angled - Scottish Highers Maths - Question 13 - 2019

Step 1

Determine the value of (i) cos p

96%

114 rated

Answer

To find cos p, we refer to triangle ABC.

Using the definition of cosine in a right-angled triangle:

cosp=adjacent sidehypotenuse\cos p = \frac{\text{adjacent side}}{\text{hypotenuse}}

The length of the adjacent side AC is 1, and the hypotenuse AB is given as (\sqrt{5}). Thus,

cosp=15\cos p = \frac{1}{\sqrt{5}}

Step 2

Determine the value of (ii) cos q

99%

104 rated

Answer

Now we find cos q using triangle ADE.

Using the same definition of cosine:

cosq=adjacent sidehypotenuse\cos q = \frac{\text{adjacent side}}{\text{hypotenuse}}

The length of DE (adjacent side) is 1, and the hypotenuse AD is given as (\sqrt{10}). Thus,

cosq=110\cos q = \frac{1}{\sqrt{10}}

Step 3

Hence determine the value of sin(p + q)

96%

101 rated

Answer

Using the angle addition formula for sine:

sin(p+q)=sinpcosq+cospsinq\sin(p + q) = \sin p \cos q + \cos p \sin q

We need to find (\sin p) and (\sin q). From the cosine values computed:

sinp=1(cosp)2=1(15)2=115=45=25\sin p = \sqrt{1 - \left(\cos p\right)^2} = \sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2} = \sqrt{1 - \frac{1}{5}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}}

Similarly,

sinq=1(cosq)2=1(110)2=1110=910=310\sin q = \sqrt{1 - \left(\cos q\right)^2} = \sqrt{1 - \left(\frac{1}{\sqrt{10}}\right)^2} = \sqrt{1 - \frac{1}{10}} = \sqrt{\frac{9}{10}} = \frac{3}{\sqrt{10}}

Substituting the values into the sine addition formula:

sin(p+q)=(25)(110)+(15)(310)\sin(p + q) = \left(\frac{2}{\sqrt{5}}\right) \left(\frac{1}{\sqrt{10}}\right) + \left(\frac{1}{\sqrt{5}}\right) \left(\frac{3}{\sqrt{10}}\right)

=250+350=2+350=550=552=12= \frac{2}{\sqrt{50}} + \frac{3}{\sqrt{50}} = \frac{2 + 3}{\sqrt{50}} = \frac{5}{\sqrt{50}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}}

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;