Photo AI

Given that $f(x) = 4 \sin \left( 3x - \frac{\pi}{3} \right)$, evaluate $f'\left( \frac{\pi}{6} \right)$. - Scottish Highers Maths - Question 12 - 2022

Question icon

Question 12

Given-that-$f(x)-=-4-\sin-\left(-3x---\frac{\pi}{3}-\right)$,-evaluate-$f'\left(-\frac{\pi}{6}-\right)$.-Scottish Highers Maths-Question 12-2022.png

Given that $f(x) = 4 \sin \left( 3x - \frac{\pi}{3} \right)$, evaluate $f'\left( \frac{\pi}{6} \right)$.

Worked Solution & Example Answer:Given that $f(x) = 4 \sin \left( 3x - \frac{\pi}{3} \right)$, evaluate $f'\left( \frac{\pi}{6} \right)$. - Scottish Highers Maths - Question 12 - 2022

Step 1

Step 1: differentiate

96%

114 rated

Answer

To find the derivative of the function, we apply the chain rule. The derivative of ( \sin(u) ) is ( \cos(u) \cdot u' ). Here, we let ( u = 3x - \frac{\pi}{3} ), so ( u' = 3 ). Thus, the derivative is:

f(x)=4cos(3xπ3)3=12cos(3xπ3)f'(x) = 4 \cos \left( 3x - \frac{\pi}{3} \right) \cdot 3 = 12 \cos \left( 3x - \frac{\pi}{3} \right)

Step 2

Step 2: complete differentiation

99%

104 rated

Answer

Now, we need to substitute ( x = \frac{\pi}{6} ) into the derivative:

f(π6)=12cos(3π6π3)f'\left( \frac{\pi}{6} \right) = 12 \cos \left( 3 \cdot \frac{\pi}{6} - \frac{\pi}{3} \right)

Calculating the argument of the cosine:

3π6=π2π2π3=3π2π6=π63 \cdot \frac{\pi}{6} = \frac{\pi}{2} \quad \Rightarrow \quad \frac{\pi}{2} - \frac{\pi}{3} = \frac{3\pi - 2\pi}{6} = \frac{\pi}{6}

Step 3

Step 3: evaluate derivative

96%

101 rated

Answer

Now we have:

f(π6)=12cos(π6)f'\left( \frac{\pi}{6} \right) = 12 \cos \left( \frac{\pi}{6} \right)

Knowing that ( \cos \left( \frac{\pi}{6} ight) = \frac{\sqrt{3}}{2} ), we can substitute:

f(π6)=1232=63f'\left( \frac{\pi}{6} \right) = 12 \cdot \frac{\sqrt{3}}{2} = 6\sqrt{3}

Thus, the final answer is:

f(π6)=63f'\left( \frac{\pi}{6} \right) = 6\sqrt{3}

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;