To evaluate the area, we first compute the integral:
A=∫−12(x2−x−2)dx
Calculating the integral:
A=[3x3−2x2−2x]−12
Evaluating this at the bounds:
-
At x=2:
A(2)=323−222−2(2)=38−2−4=38−36−312=38−6−12=3−10
-
At x=−1:
A(−1)=3(−1)3−2(−1)2−2(−1)=−31−21+2=−31−63+612=−31+69=−31+23=63imes2−2=66−2=64=32
Now, we subtract:
A=3−10−(−32)=−310+32=−38
Therefore, the area is:
Area=38extsquareunits.