Photo AI

14. (a) Evaluate $ ext{log}_{8} 4 + 2 ext{log}_{8} 5$ - Scottish Highers Maths - Question 14 - 2019

Question icon

Question 14

14.-(a)-Evaluate-$-ext{log}_{8}-4-+-2--ext{log}_{8}-5$-Scottish Highers Maths-Question 14-2019.png

14. (a) Evaluate $ ext{log}_{8} 4 + 2 ext{log}_{8} 5$. (b) Solve $ ext{log}_{3}(7x-2) - ext{log}_{3} 3 = 5$, $x geq 1$.

Worked Solution & Example Answer:14. (a) Evaluate $ ext{log}_{8} 4 + 2 ext{log}_{8} 5$ - Scottish Highers Maths - Question 14 - 2019

Step 1

Evaluate $ ext{log}_{8} 4 + 2 ext{log}_{8} 5$

96%

114 rated

Answer

To evaluate this expression, we will first apply the logarithmic identities.

  1. Using the property of logarithms that states: extlogban=nlogba ext{log}_{b} a^n = n \cdot \text{log}_{b} a we simplify 2log852 \text{log}_{8} 5: 2log85=log852=log8252 \text{log}_{8} 5 = \text{log}_{8} 5^2 = \text{log}_{8} 25

  2. Now substitute back into the expression:
    log84+log825\text{log}_{8} 4 + \text{log}_{8} 25

  3. Using the property that states: logba+logbc=logb(a×c)\text{log}_{b} a + \text{log}_{b} c = \text{log}_{b} (a \times c) we can combine the two: log8(4×25)=log8100\text{log}_{8} (4 \times 25) = \text{log}_{8} 100

  4. Next, we can express 100100 as a power of 88. We know that: 82=64and82.51008^{2} = 64 \quad \text{and} \quad 8^{2.5} \approx 100

Thus, we conclude: log81002.5\text{log}_{8} 100 \approx 2.5.

Step 2

Solve $ ext{log}_{3}(7x-2) - ext{log}_{3} 3 = 5$

99%

104 rated

Answer

  1. First, we can use the property of logarithms: logbalogbc=logb(ac)\text{log}_{b} a - \text{log}_{b} c = \text{log}_{b} \left( \frac{a}{c} \right) to simplify the left-hand side: log3(7x23)=5\text{log}_{3} \left( \frac{7x - 2}{3} \right) = 5

  2. Next, we convert the logarithmic equation to exponential form:
    7x23=35\frac{7x - 2}{3} = 3^5 7x23=243\frac{7x - 2}{3} = 243

  3. Multiply both sides by 3:
    7x2=7297x - 2 = 729

  4. Add 2 to both sides:
    7x=7317x = 731

  5. Finally, divide by 7 to solve for xx:
    x=7317104.43x = \frac{731}{7} \approx 104.43

Since x1x \geq 1, this solution is valid.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;