Photo AI

Evaluate $$\int_{4}^{9} \frac{1}{\sqrt{(2x+9)}}dx.$$ - Scottish Highers Maths - Question 14 - 2018

Question icon

Question 14

Evaluate-$$\int_{4}^{9}-\frac{1}{\sqrt{(2x+9)}}dx.$$-Scottish Highers Maths-Question 14-2018.png

Evaluate $$\int_{4}^{9} \frac{1}{\sqrt{(2x+9)}}dx.$$

Worked Solution & Example Answer:Evaluate $$\int_{4}^{9} \frac{1}{\sqrt{(2x+9)}}dx.$$ - Scottish Highers Maths - Question 14 - 2018

Step 1

Write in integrable form

96%

114 rated

Answer

We start with the given integral: 1(2x+9)dx.\int \frac{1}{\sqrt{(2x+9)}}dx.

Step 2

Start to integrate

99%

104 rated

Answer

We can rewrite the integrand as: (2x+9)1/2dx.\int (2x+9)^{-1/2}dx.

Step 3

Complete integration

96%

101 rated

Answer

Using the power rule for integration, we have: (2x+9)1/2dx=(2x+9)1/2(1/2)12=(2x+9)1/2+C.\int (2x+9)^{-1/2}dx = \frac{(2x+9)^{1/2}}{(1/2)}\cdot \frac{1}{2} = (2x+9)^{1/2} + C.

Step 4

Process limits

98%

120 rated

Answer

Now we apply the limits of integration from 4 to 9: [(2(9)+9)1/2(2(4)+9)1/2].\left[ (2(9)+9)^{1/2} - (2(4)+9)^{1/2} \right].

Step 5

Evaluate integral

97%

117 rated

Answer

Calculating gives us:

  1. Evaluate at the upper limit:

    • (2(9)+9)1/2=(18+9)1/2=271/2=33(2(9)+9)^{1/2} = (18+9)^{1/2} = 27^{1/2} = 3\sqrt{3}
  2. Evaluate at the lower limit:

    • (2(4)+9)1/2=(8+9)1/2=171/2=17(2(4)+9)^{1/2} = (8+9)^{1/2} = 17^{1/2} = \sqrt{17}

Combining both results gives: 3317. 3\sqrt{3} - \sqrt{17}.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;