Photo AI

Given that $f(x) = 4 \sin \left( 3x - \frac{\pi}{3} \right)$, evaluate $f' \left( \frac{\pi}{6} \right)$. - Scottish Highers Maths - Question 12 - 2022

Question icon

Question 12

Given-that-$f(x)-=-4-\sin-\left(-3x---\frac{\pi}{3}-\right)$,-evaluate-$f'-\left(-\frac{\pi}{6}-\right)$.-Scottish Highers Maths-Question 12-2022.png

Given that $f(x) = 4 \sin \left( 3x - \frac{\pi}{3} \right)$, evaluate $f' \left( \frac{\pi}{6} \right)$.

Worked Solution & Example Answer:Given that $f(x) = 4 \sin \left( 3x - \frac{\pi}{3} \right)$, evaluate $f' \left( \frac{\pi}{6} \right)$. - Scottish Highers Maths - Question 12 - 2022

Step 1

Start to Differentiate

96%

114 rated

Answer

To differentiate the function, use the chain rule. The derivative of sin(u)\sin(u) is cos(u)u\cos(u) \cdot u' where u=3xπ3u = 3x - \frac{\pi}{3}. Thus, we start with:

f(x)=4cos(3xπ3)ddx(3xπ3)f'(x) = 4 \cos \left( 3x - \frac{\pi}{3} \right) \cdot \frac{d}{dx}(3x - \frac{\pi}{3})

Calculating the derivative of uu gives us:

ddx(3xπ3)=3\frac{d}{dx}(3x - \frac{\pi}{3}) = 3

So we can write:

f(x)=4cos(3xπ3)3=12cos(3xπ3).f'(x) = 4 \cos \left( 3x - \frac{\pi}{3} \right) \cdot 3 = 12 \cos \left( 3x - \frac{\pi}{3} \right).

Step 2

Evaluate Derivative

99%

104 rated

Answer

Next, we need to evaluate f(π6)f' \left( \frac{\pi}{6} \right):

First, substitute x=π6x = \frac{\pi}{6} into the derivative:

f(π6)=12cos(3π6π3)f' \left( \frac{\pi}{6} \right) = 12 \cos \left( 3 \cdot \frac{\pi}{6} - \frac{\pi}{3} \right)

This simplifies to:

=12cos(π2π3)= 12 \cos \left( \frac{\pi}{2} - \frac{\pi}{3} \right)

Calculating the angle gives us:

=12cos(π2π3)=12cos(π6)= 12 \cos \left( \frac{\pi}{2} - \frac{\pi}{3} \right) = 12 \cos \left( \frac{\pi}{6} \right)

We know that:

cos(π6)=32\cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}

Thus we have:

f(π6)=1232=63.f' \left( \frac{\pi}{6} \right) = 12 \cdot \frac{\sqrt{3}}{2} = 6\sqrt{3}.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;