Photo AI

Given that $y = \frac{1}{(1-3x)^{3}} \cdot x^{\frac{1}{3}}$ find $\frac{dy}{dx}$. - Scottish Highers Maths - Question 6 - 2022

Question icon

Question 6

Given-that--$y-=-\frac{1}{(1-3x)^{3}}-\cdot-x^{\frac{1}{3}}$--find-$\frac{dy}{dx}$.-Scottish Highers Maths-Question 6-2022.png

Given that $y = \frac{1}{(1-3x)^{3}} \cdot x^{\frac{1}{3}}$ find $\frac{dy}{dx}$.

Worked Solution & Example Answer:Given that $y = \frac{1}{(1-3x)^{3}} \cdot x^{\frac{1}{3}}$ find $\frac{dy}{dx}$. - Scottish Highers Maths - Question 6 - 2022

Step 1

Write in Differentiable Form

96%

114 rated

Answer

To find dydx \frac{dy}{dx}, we start with the given function:

y=1(13x)3x13y = \frac{1}{(1-3x)^{3}} \cdot x^{\frac{1}{3}}

This expression is already in a differentiable form.

Step 2

Start to Differentiate

99%

104 rated

Answer

We will apply the product rule for differentiation. The product rule states that if we have two functions u(x)u(x) and v(x)v(x), then:

d(uv)dx=udvdx+vdudx\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}

Let:

  • u=1(13x)3u = \frac{1}{(1-3x)^{3}}
  • v=x13v = x^{\frac{1}{3}}

Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}.

Step 3

Complete Differentiation

96%

101 rated

Answer

First, differentiate vv:

dvdx=13x23\frac{dv}{dx} = \frac{1}{3} x^{-\frac{2}{3}}

Next, differentiate uu using the chain rule:

dudx=3(13x)4(3)=9(13x)4\frac{du}{dx} = -3(1-3x)^{-4} \cdot (-3) = 9(1-3x)^{-4}

Now we can apply the product rule:

dydx=udvdx+vdudx\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}

Substituting in:

dydx=1(13x)313x23+x139(13x)4\frac{dy}{dx} = \frac{1}{(1-3x)^{3}} \cdot \frac{1}{3} x^{-\frac{2}{3}} + x^{\frac{1}{3}} \cdot 9(1-3x)^{-4}

This gives:

dydx=13(13x)3x23+9x13(13x)4\frac{dy}{dx} = \frac{1}{3(1-3x)^{3}} x^{-\frac{2}{3}} + 9x^{\frac{1}{3}}(1-3x)^{-4}

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;