First, differentiate v:
dxdv=31x−32
Next, differentiate u using the chain rule:
dxdu=−3(1−3x)−4⋅(−3)=9(1−3x)−4
Now we can apply the product rule:
dxdy=udxdv+vdxdu
Substituting in:
dxdy=(1−3x)31⋅31x−32+x31⋅9(1−3x)−4
This gives:
dxdy=3(1−3x)31x−32+9x31(1−3x)−4