Photo AI

10. (a) Given that $y = (|x|^2 + 7)^{\frac{1}{2}}$, find $\frac{dy}{dx}$ - Scottish Highers Maths - Question 10 - 2016

Question icon

Question 10

10.-(a)-Given-that-$y-=-(|x|^2-+-7)^{\frac{1}{2}}$,-find-$\frac{dy}{dx}$-Scottish Highers Maths-Question 10-2016.png

10. (a) Given that $y = (|x|^2 + 7)^{\frac{1}{2}}$, find $\frac{dy}{dx}$. (b) Hence find $\int \frac{4x}{\sqrt{x^2 + 7}} \, dx$.

Worked Solution & Example Answer:10. (a) Given that $y = (|x|^2 + 7)^{\frac{1}{2}}$, find $\frac{dy}{dx}$ - Scottish Highers Maths - Question 10 - 2016

Step 1

Given that $y = (|x|^2 + 7)^{\frac{1}{2}}$, find $\frac{dy}{dx}$.

96%

114 rated

Answer

We start by applying the chain rule to differentiate the function.

First, we differentiate yy with respect to xx:

dydx=12(x2+7)12ddx(x2+7).\frac{dy}{dx} = \frac{1}{2}(|x|^2 + 7)^{-\frac{1}{2}} \cdot \frac{d}{dx}(|x|^2 + 7).

Now, we know that the derivative of x2|x|^2 is 2x2x, therefore:

dydx=12(x2+7)122x=xx2+7.\frac{dy}{dx} = \frac{1}{2}(|x|^2 + 7)^{-\frac{1}{2}} \cdot 2x = \frac{x}{\sqrt{|x|^2 + 7}}.

Step 2

Hence find $\int \frac{4x}{\sqrt{x^2 + 7}} \, dx$.

99%

104 rated

Answer

Using the result from part (a), we can now evaluate the integral.

We have:

4xx2+7dx=4xx2+7dx.\int \frac{4x}{\sqrt{x^2 + 7}} \, dx = 4 \int \frac{x}{\sqrt{x^2 + 7}} \, dx.

Substituting y=x2+7y = \sqrt{x^2 + 7} gives:

=412(x2+7)12+C=4x2+7+C.= 4 \cdot \frac{1}{2} (x^2 + 7)^{\frac{1}{2}} + C = 4 \sqrt{x^2 + 7} + C.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;