Now, we evaluate the integral:
A=∫−12(x2−x−2)dx
First, calculate the antiderivative:
∫(x2−x−2)dx=31x3−21x2−2x
Next, we substitute the limits −1 and 2:
A=[31(2)3−21(2)2−2(2)]−[31(−1)3−21(−1)2−2(−1)]
Evaluating this gives:
A=[38−2−4]−[−31−21+2]
Calculating the first part:
=38−6=38−318=−310
And now the second part:
−(−31−21+2)=−(−31−63+612)=−(68−31)=310
Thus, the total area is:
A=310+310=320
So, the shaded area between the curves is:
A=9units2