Photo AI

Functions $f$ and $g$ are defined by: * $f(x) = 2 ext{sin } x$, where $0 < x < \frac{\pi}{2}$ * $g(x) = \text{z} x$, where $0 < x < \frac{\pi}{4}$ a) (i) Evaluate $f(g(\frac{\pi}{6}))$ - Scottish Highers Maths - Question 13 - 2023

Question icon

Question 13

Functions-$f$-and-$g$-are-defined-by:--*-$f(x)-=-2--ext{sin-}-x$,-where-$0-<-x-<-\frac{\pi}{2}$-*-$g(x)-=-\text{z}-x$,-where-$0-<-x-<-\frac{\pi}{4}$--a)-(i)-Evaluate-$f(g(\frac{\pi}{6}))$-Scottish Highers Maths-Question 13-2023.png

Functions $f$ and $g$ are defined by: * $f(x) = 2 ext{sin } x$, where $0 < x < \frac{\pi}{2}$ * $g(x) = \text{z} x$, where $0 < x < \frac{\pi}{4}$ a) (i) Evaluate... show full transcript

Worked Solution & Example Answer:Functions $f$ and $g$ are defined by: * $f(x) = 2 ext{sin } x$, where $0 < x < \frac{\pi}{2}$ * $g(x) = \text{z} x$, where $0 < x < \frac{\pi}{4}$ a) (i) Evaluate $f(g(\frac{\pi}{6}))$ - Scottish Highers Maths - Question 13 - 2023

Step 1

Evaluate $f(g(\frac{\pi}{6}))$

96%

114 rated

Answer

First, we need to find g(π6)g(\frac{\pi}{6}):

g(x)=zxg(x) = z x So, g(π6)=zπ6g(\frac{\pi}{6}) = z \cdot \frac{\pi}{6}

Next, we evaluate f(g(π6))f(g(\frac{\pi}{6})):

Since g(π6)=zπ6g(\frac{\pi}{6}) = z \cdot \frac{\pi}{6},

f(g(π6))=f(zπ6)=2sin(zπ6)f(g(\frac{\pi}{6})) = f(z \cdot \frac{\pi}{6}) = 2 \text{sin}(z \cdot \frac{\pi}{6})

Substituting values will yield:

f(g(π6))=2sin(π6)=212=1f(g(\frac{\pi}{6})) = 2 \text{sin}(\frac{\pi}{6}) = 2 \cdot \frac{1}{2} = 1

Step 2

Determine an expression for $f(g(x))$

99%

104 rated

Answer

We know from the definitions that:

g(x)=zxg(x) = z x

Thus, f(g(x))=f(zx)f(g(x)) = f(z x)

Substituting in the function f(x)f(x):

f(g(x))=f(zx)=2sin(zx)f(g(x)) = f(z x) = 2 \text{sin}(z x)

Therefore, the expression for f(g(x))f(g(x)) is:

f(g(x))=2sin(zx)f(g(x)) = 2 \text{sin}(z x)

Step 3

Given that $f(p) = \frac{1}{3}$, determine the exact value of \text{sin } p

96%

101 rated

Answer

We have:

f(p)=2sin(p)=13f(p) = 2 \text{sin}(p) = \frac{1}{3}

Rearranging gives:

sin(p)=16\text{sin}(p) = \frac{1}{6}

Step 4

Hence, determine the exact value of $f(g(p))$

98%

120 rated

Answer

From part (b)(ii), we have:

g(p)=zpg(p) = z p

Thus, f(g(p))=f(zp)=2sin(zp)f(g(p)) = f(z p) = 2 \text{sin}(z p)

Substituting the value of pp:

f(g(p))=2sin(z16)f(g(p)) = 2 \text{sin}(z \cdot \frac{1}{6})

This can be evaluated based on the required value of zz.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;