Photo AI

3. (a) Express $4 \, ext{sin} \, x + 5 \, ext{cos} \, x$ in the form $k \, ext{sin}(x + \, ext{a})$ where $k > 0$ and $0 < \alpha < 2\pi$ - Scottish Highers Maths - Question 3 - 2022

Question icon

Question 3

3.-(a)-Express-$4-\,--ext{sin}-\,-x-+-5-\,--ext{cos}-\,-x$-in-the-form-$k-\,--ext{sin}(x-+-\,--ext{a})$-where-$k->-0$-and-$0-<-\alpha-<-2\pi$-Scottish Highers Maths-Question 3-2022.png

3. (a) Express $4 \, ext{sin} \, x + 5 \, ext{cos} \, x$ in the form $k \, ext{sin}(x + \, ext{a})$ where $k > 0$ and $0 < \alpha < 2\pi$. (b) Hence solve $4 ... show full transcript

Worked Solution & Example Answer:3. (a) Express $4 \, ext{sin} \, x + 5 \, ext{cos} \, x$ in the form $k \, ext{sin}(x + \, ext{a})$ where $k > 0$ and $0 < \alpha < 2\pi$ - Scottish Highers Maths - Question 3 - 2022

Step 1

Express $4 \text{sin} x + 5 \text{cos} x$ in the form $k \text{sin}(x + \alpha)$

96%

114 rated

Answer

To express the function 4sinx+5cosx4 \text{sin} x + 5 \text{cos} x in the form ksin(x+α)k \text{sin}(x + \alpha), we will use the compound angle formula:

ksin(x+α)=k(sinxcosα+cosxsinα)k \text{sin}(x + \alpha) = k (\text{sin} x \cos \alpha + \text{cos} x \sin \alpha)

Setting the coefficients equal gives us the equations:

  • kcosα=4k \cos \alpha = 4
  • ksinα=5k \sin \alpha = 5

We can find kk by using the Pythagorean identity:

k=(kcosα)2+(ksinα)2=42+52=16+25=41.k = \sqrt{(k \cos \alpha)^2 + (k \sin \alpha)^2} = \sqrt{4^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41}.

Now, we can express kk as: k=41k = \sqrt{41}

Next, we find the angles. Using the previously established equations, we have:

cosα=441andsinα=541\cos \alpha = \frac{4}{\sqrt{41}} \quad \text{and} \quad \sin \alpha = \frac{5}{\sqrt{41}}

Thus, we can express 4sinx+5cosx4 \text{sin} x + 5 \text{cos} x as: $$ \sqrt{41} \text{sin}\left(x + \alpha \right) \text{ where } \alpha = \tan^{-1}\left(\frac{5}{4}\right) $.

Step 2

Hence solve $4 \text{sin} x + 5 \text{cos} x = 5.5$

99%

104 rated

Answer

Using the result from part (a), we re-write the equation:

41sin(x+α)=5.5\sqrt{41} \text{sin}(x + \alpha) = 5.5

Dividing both sides by 41\sqrt{41}:

sin(x+α)=5.541\text{sin}(x + \alpha) = \frac{5.5}{\sqrt{41}}

Calculating the right-hand side:

5.5410.857.\frac{5.5}{\sqrt{41}} \approx 0.857.

Thus, we find:

x+α=sin1(0.857)orx+α=πsin1(0.857).x + \alpha = \sin^{-1}(0.857) \quad \text{or} \quad x + \alpha = \pi - \sin^{-1}(0.857).

Now, we can calculate:

  • Let α0.674\alpha \approx 0.674 (using a calculator) for convenience.

Thus, we have:

  • x=sin1(0.857)α1.0330.6740.359x = \sin^{-1}(0.857) - \alpha \approx 1.033 - 0.674 \approx 0.359,
  • x=πsin1(0.857)α2.1080.6741.434x = \pi - \sin^{-1}(0.857) - \alpha \approx 2.108 - 0.674 \approx 1.434.

For solutions, we must ensure that they are within the specified range [0,2π)[0, 2\pi), so:

  1. x0.359x \approx 0.359
  2. x1.434x \approx 1.434.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;