Three vectors can be expressed as follows:
\( \vec{FG} = -2\hat{i} - 6\hat{j} - 3\hat{k} \)
\( \vec{GH} = 3\hat{i} + 9\hat{j} - 7\hat{k} \)
\( \vec{EH} = 2\hat{i} + 3\hat{j} + \hat{k} \)
(a) Find \( \vec{FH} \) - Scottish Highers Maths - Question 7 - 2016

Question 7

Three vectors can be expressed as follows:
\( \vec{FG} = -2\hat{i} - 6\hat{j} - 3\hat{k} \)
\( \vec{GH} = 3\hat{i} + 9\hat{j} - 7\hat{k} \)
\( \vec{EH} = 2\hat{i}... show full transcript
Worked Solution & Example Answer:Three vectors can be expressed as follows:
\( \vec{FG} = -2\hat{i} - 6\hat{j} - 3\hat{k} \)
\( \vec{GH} = 3\hat{i} + 9\hat{j} - 7\hat{k} \)
\( \vec{EH} = 2\hat{i} + 3\hat{j} + \hat{k} \)
(a) Find \( \vec{FH} \) - Scottish Highers Maths - Question 7 - 2016
Find \( \vec{FH} \).

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find ( \vec{FH} ), we use the relation:
[ \vec{FH} = \vec{FG} + \vec{GH} ]
Substituting the given vectors:
[ \vec{FH} = (-2\hat{i} - 6\hat{j} - 3\hat{k}) + (3\hat{i} + 9\hat{j} - 7\hat{k}) ]
Combining the components:
[ \vec{FH} = (-2 + 3)\hat{i} + (-6 + 9)\hat{j} + (-3 - 7)\hat{k} ]
[ \vec{FH} = 1\hat{i} + 3\hat{j} - 10\hat{k} ]
Hence, or otherwise, find \( \vec{FE} \).

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find ( \vec{FE} ), we can express it using the relation:
[ \vec{FE} = \vec{FH} + \vec{HE} ]
Where ( \vec{HE} = \vec{EH} - \vec{GH} ).
Thus, substituting:
[ \vec{FE} = \vec{FH} + (\vec{EH} - \vec{GH}) ]
Substituting the values:
[ \vec{FE} = (1\hat{i} + 3\hat{j} - 10\hat{k}) + ((2\hat{i} + 3\hat{j} + \hat{k}) - (3\hat{i} + 9\hat{j} - 7\hat{k})) ]
Calculating ( \vec{HE} ):
[ \vec{HE} = (2 - 3)\hat{i} + (3 - 9)\hat{j} + (1 + 7)\hat{k} = -1\hat{i} - 6\hat{j} + 8\hat{k} ]
Finally, substituting:
[ \vec{FE} = (1 - 1)\hat{i} + (3 - 6)\hat{j} + (-10 + 8)\hat{k} ]
[ \vec{FE} = 0\hat{i} - 3\hat{j} - 2\hat{k} ]
Hence:
[ \vec{FE} = -1\hat{i} - 5\hat{j} ]
Join the Scottish Highers students using SimpleStudy...
97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;