Photo AI

A space probe of mass 5-60 × 10^(-3) kg is in orbit at a height of 3.70 × 10^(-6) m above the surface of Mars - Scottish Highers Physics - Question 3 - 2015

Question icon

Question 3

A-space-probe-of-mass-5-60-×-10^(-3)-kg-is-in-orbit-at-a-height-of-3.70-×-10^(-6)-m-above-the-surface-of-Mars-Scottish Highers Physics-Question 3-2015.png

A space probe of mass 5-60 × 10^(-3) kg is in orbit at a height of 3.70 × 10^(-6) m above the surface of Mars. The mass of Mars is 6.42 × 10^(23) kg. The radius of ... show full transcript

Worked Solution & Example Answer:A space probe of mass 5-60 × 10^(-3) kg is in orbit at a height of 3.70 × 10^(-6) m above the surface of Mars - Scottish Highers Physics - Question 3 - 2015

Step 1

Calculate the gravitational force between the probe and Mars.

96%

114 rated

Answer

To calculate the gravitational force between the space probe and Mars, we can use the formula:

F=GMmr2F = \frac{GMm}{r^2}

Where:

  • G=6.67×1011 N m2/kg2G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2 (gravitational constant)
  • M=6.42×1023 kgM = 6.42 \times 10^{23} \text{ kg} (mass of Mars)
  • m=5.60×103 kgm = 5.60 \times 10^{-3} \text{ kg} (mass of the probe)
  • r=R+hr = R + h (distance from the center of Mars to the probe)

Calculating rr:

  • Radius of Mars, R=3.39×106 mR = 3.39 \times 10^{6} \text{ m}
  • Height of the probe above the surface, h=3.70×106 mh = 3.70 \times 10^{-6} \text{ m}

Thus: r=3.39×106+3.70×1063.39×106 mr = 3.39 \times 10^{6} + 3.70 \times 10^{-6} \approx 3.39 \times 10^{6} \text{ m}

Now, substitute these values into the gravitational force formula:

F=(6.67×1011)(6.42×1023)(5.60×103)(3.39×106)2F = \frac{(6.67 \times 10^{-11})(6.42 \times 10^{23})(5.60 \times 10^{-3})}{(3.39 \times 10^{6})^2}

Calculating this gives: F4.77×101 NF \approx 4.77 \times 10^{1} \text{ N}

Step 2

Calculate the gravitational field strength of Mars at this height.

99%

104 rated

Answer

The gravitational field strength gg can be calculated using the formula:

g=Fmg = \frac{F}{m}

Where:

  • FF is the gravitational force calculated in part (a).
  • mm is the mass of the probe.

Substituting the values: g=4.77×101 N5.60×103 kg852 N kg1g = \frac{4.77 \times 10^{1} \text{ N}}{5.60 \times 10^{-3} \text{ kg}} \approx 852 \text{ N kg}^{-1}

Thus, the gravitational field strength of Mars at the height of the probe is approximately 852 N kg1852 \text{ N kg}^{-1}.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;