Photo AI

Scientists have recently discovered a type of particle called a pentaquark - Scottish Highers Physics - Question 7 - 2019

Question icon

Question 7

Scientists-have-recently-discovered-a-type-of-particle-called-a-pentaquark-Scottish Highers Physics-Question 7-2019.png

Scientists have recently discovered a type of particle called a pentaquark. Pentaquarks are very short lived and contain five quarks. A lambda (Λ) pentaquark contai... show full transcript

Worked Solution & Example Answer:Scientists have recently discovered a type of particle called a pentaquark - Scottish Highers Physics - Question 7 - 2019

Step 1

Explain what is meant by the term fundamental particle.

96%

114 rated

Answer

Fundamental particles are the basic building blocks of matter and are not composed of other particles. They cannot be divided into smaller components or broken down any further.

Step 2

State the name given to the group of matter particles that contains quarks and leptons.

99%

104 rated

Answer

The name given to the group of matter particles that contains quarks and leptons is Fermions.

Step 3

Determine the total charge on the Λ₆ pentaquark.

96%

101 rated

Answer

To calculate the total charge on the Λ₆ pentaquark, we sum the charges of each quark:

  • Charge from 2 up quarks: 2 × (+2/3) = +4/3
  • Charge from 1 down quark: 1 × (-1/3) = -1/3
  • Charge from 1 charm quark: 1 × (+2/3) = +2/3
  • Charge from 1 anti-charm quark: 1 × (-2/3) = -2/3

Now, summing these:

extTotalcharge=(+4/3)+(1/3)+(+2/3)+(2/3)=+3/3=+1 ext{Total charge} = (+4/3) + (-1/3) + (+2/3) + (-2/3) = +3/3 = +1

Thus, the total charge on the Λ₆ pentaquark is +1.

Step 4

State the type of particle that is made of a quark-antiquark pair.

98%

120 rated

Answer

The type of particle that is made of a quark-antiquark pair is called a Meson.

Step 5

Calculate the mean lifetime of this quark-antiquark pair relative to the stationary observer.

97%

117 rated

Answer

To find the mean lifetime of the quark-antiquark pair as observed by a stationary observer, we apply time dilation from special relativity:

t=t1v2c2t' = t \sqrt{1 - \frac{v^2}{c^2}}

Where:

  • t=8.0×1021st = 8.0 \times 10^{-21} \, \text{s} (the proper lifetime)
  • v=0.91cv = 0.91c

Substituting values into the equation: t=8.0×10211(0.91)2t' = 8.0 \times 10^{-21} \sqrt{1 - (0.91)^2} Calculating: t=8.0×102110.8281=8.0×10210.17198.0×1021×0.41423.31×1021st' = 8.0 \times 10^{-21} \sqrt{1 - 0.8281} = 8.0 \times 10^{-21} \sqrt{0.1719} \approx 8.0 \times 10^{-21} \times 0.4142 \approx 3.31 \times 10^{-21} \, \text{s}

So the mean lifetime relative to the stationary observer is approximately 3.31×1021s3.31 \times 10^{-21} \, \text{s}.

Step 6

Determine the energy, in joules, of the Λ₆ pentaquark.

97%

121 rated

Answer

To calculate the energy of the Λ₆ pentaquark in joules, we use the mass-energy equivalence:

E=mc2E = mc^2\,

Where:

  • m=4450MeV×1.60×1019J/eV=7.12×1016Jm = 4450 \, \text{MeV} \times 1.60 \times 10^{-19} \, \text{J/eV} = 7.12 \times 10^{-16} \, \text{J}.

So, the energy of the Λ₆ pentaquark is approximately 7.12×1016J7.12 \times 10^{-16} \, \text{J}.

Step 7

Calculate the mass of the Λ₆ pentaquark.

96%

114 rated

Answer

To find the mass of the Λ₆ pentaquark, we use the energy calculated previously and apply the relation E=mc2E = mc^2: Given E=4450MeV=7.12×1016JE = 4450 \, \text{MeV} = 7.12 \times 10^{-16} \, \text{J} and c3.0×108m/sc \approx 3.0 \times 10^8 \, \text{m/s}:

m=Ec2=7.12×1016J(3.0×108m/s)27.91×1033kgm = \frac{E}{c^2} = \frac{7.12 \times 10^{-16} \, \text{J}}{(3.0 \times 10^8 \, \text{m/s})^2} \approx 7.91 \times 10^{-33} \, \text{kg}

Thus, the mass of the Λ₆ pentaquark is approximately 7.91×1033kg7.91 \times 10^{-33} \, \text{kg}.

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;