Photo AI

Last Updated Sep 26, 2025

Rational Expressions Simplified Revision Notes

Revision notes with simplified explanations to understand Rational Expressions quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

325+ students studying

2.6.1 Rational Expressions

Rational Functions

Definition:

A rational function is a function that can be written as p(x)q(x)\dfrac{p(x)}{q(x)} where p(x)p(x) and q(x)q(x) are polynomials in xx.

infoNote

Example: x2+5x8\dfrac{x^2 + 5}{x - 8} is a rational function.

Simplifying Rational Functions

Rational functions can be simplified using polynomial factorization.

infoNote

Example 1:

4y22y2+y×y2+2y152y2+11y+5\frac{4y^2}{2y^2 + y} \times \frac{y^2 + 2y - 15}{2y^2 + 11y + 5}
  1. Factorize the polynomials:
=4y2×(y1)(y+5)(2y+1)(y)(y+5)(y3)= \frac{4y^2 \times (y-1)(y+5)}{(2y+1)(y)(y+5)(y-3)}
  1. Cancel common factors:
=4y×(y1)(2y+1)(y3)= \frac{4y \times (y-1)}{(2y+1)(y-3)}

Result:

4yy3\frac{4y}{y-3}
infoNote

Example 2:

5t+122t2+7t+342t+1\frac{5t + 12}{2t^2 + 7t + 3} - \frac{4}{2t+1}
  1. Find a common denominator:
=5t+12(2t+1)(t+3)4(t+3)(2t+1)(t+3)= \frac{5t + 12}{(2t+1)(t+3)} - \frac{4(t+3)}{(2t+1)(t+3)}
  1. Combine into a single fraction:
=5t+124t12(2t+1)(t+3)= \frac{5t + 12 - 4t - 12}{(2t+1)(t+3)}
  1. Simplify the expression:
=t(2t+1)(t+3)= \frac{t}{(2t+1)(t+3)}
infoNote

Example 3: Simplify fully

3x28x32x26x\frac{3x^2 - 8x - 3}{2x^2 - 6x}
  1. Factorize both numerator and denominator:
=(3x+1)(x3)2x(x3)= \frac{(3x+1)(x-3)}{2x(x-3)}
  1. Cancel common factors:
=3x+12x= \frac{3x+1}{2x}

Final result:

32+12x\frac{3}{2} + \frac{1}{2x}

Applications to Partial Fractions

infoNote

Express 9x2+20x10(x+2)(3x1)\dfrac{9x^2 + 20x - 10}{(x+2)(3x-1)} in partial fractions. Notice that the denominator has the same order as the numerator. This means the division algorithm will give rise to a constant term.

(x+2)(3x1)=3x2+6xx2=3x2+5x2(x+2)(3x-1) = 3x^2 + 6x - x - 2 = 3x^2 + 5x - 2

Do division by grid method:

9x2+20x103x2+5x2\frac{9x^2 + 20x - 10}{3x^2 + 5x - 2}
  1. Divide 9x29x^2 by 3x23x^2 to get 33 (Quotient):
3×(3x2+5x2)=9x2+15x63 \times (3x^2 + 5x - 2) = 9x^2 + 15x - 6
  1. Subtract to find the remainder:
(9x2+20x10)(9x2+15x6)=5x4(9x^2 + 20x - 10) - (9x^2 + 15x - 6) = 5x - 45x4(x+2)(3x1)\Rightarrow \frac{5x-4}{(x+2)(3x-1)}

Key Point: If the numerator is top-heavy, i.e., has a degree \geq the denominator, a division must be performed before partial fractions can be found.

Concentrating on just the partial fractions and ignoring the quotient:

5x4(x+2)(3x1)=Ax+2+B3x1\frac{5x-4}{(x+2)(3x-1)} = \frac{A}{x+2} + \frac{B}{3x-1}

Multiply both sides by (x+2)(3x1)(x+2)(3x-1) to get:

5x4=A(3x1)+B(x+2)5x - 4 = A(3x-1) + B(x+2)
  • Let x=2x = -2:
5(2)4=104=147A=14A=25(-2) - 4 = -10 - 4 = -14 \Rightarrow -7A = -14 \Rightarrow A = 2
  • Let x=13x = \frac{1}{3}:
5×134=53123=735 \times \frac{1}{3} - 4 = \frac{5}{3} - \frac{12}{3} = -\frac{7}{3}73=13BB=1\Rightarrow -\frac{7}{3} = \frac{1}{3}B \Rightarrow B = -15x4=2(3x1)1(x+2)]5x - 4 = 2(3x-1) - 1(x+2)]=6x2x2= 6x - 2 - x - 2=5x4 (which verifies our values of A and B)= 5x - 4 \text{ (which verifies our values of \(A\) and \(B\))}9x2+20x10(x+2)(3x1)=3+2x+213x1\Rightarrow \frac{9x^2 + 20x - 10}{(x+2)(3x-1)} = 3 + \frac{2}{x+2} - \frac{1}{3x-1}

Partial Fractions

infoNote

GCSE Recap:

Write as a single fraction: 3x+2+4x3\dfrac{3}{x+2} + \dfrac{4}{x-3}

Need to have the same denominator:

3(x3)+4(x+2)(x+2)(x3)=3x9+4x+8(x+2)(x3)=7x1(x+2)(x3)\frac{3(x-3) + 4(x+2)}{(x+2)(x-3)} = \frac{3x-9 + 4x+8}{(x+2)(x-3)} = \frac{7x-1}{(x+2)(x-3)}
infoNote

New Material:

Write 7x1(x+2)(x3)\dfrac{7x-1}{(x+2)(x-3)} as the sum of separate fractions.

  1. Write an identity with the LHS as our combined fraction and the RHS as our target form:
7x1(x+2)(x3)Ax+2+Bx3\frac{7x-1}{(x+2)(x-3)} \equiv \frac{A}{x+2} + \frac{B}{x-3}
  1. Multiply both sides by the denominator of the LHS:
7x1A(x3)+B(x+2)7x-1 \equiv A(x-3) + B(x+2)
  1. Substitute in 'tactical' values of xx to help find the values of AA and BB:
  • Let x=3x = 3:
20=A(33)+5BB=420 = A(3-3) + 5B \Rightarrow B = 4
  • Let x=2x = -2:
15=5AA=3-15 = -5A \Rightarrow A = 3

Thus:

7x1(x+2)(x3)=3x+2+4x3\frac{7x-1}{(x+2)(x-3)} = \frac{3}{x+2} + \frac{4}{x-3}

infoNote

Example 1:

Write 2(x+1)(x+3)\dfrac{2}{(x+1)(x+3)} as partial fractions.

  1. Start by expressing 2(x+1)(x+3)\dfrac{2}{(x+1)(x+3)} as the sum of two fractions:
2(x+1)(x+3)Ax+1+Bx+3\frac{2}{(x+1)(x+3)} \equiv \frac{A}{x+1} + \frac{B}{x+3}
  1. Multiply through by the common denominator (x+1)(x+3)(x+1)(x+3) to clear the fractions:
2A(x+3)+B(x+1)2 \equiv A(x+3) + B(x+1)
  1. Substitute values of xx to solve for AA and BB:
  • Let x=3x = -3:
2=A(3+3)+B(3+1)2=2BB=12 = A(-3+3) + B(-3+1) \Rightarrow 2 = -2B \Rightarrow B = -1
  • Let x=1x = -1:
2=A(1+3)+B(1+1)2=2AA=12 = A(-1+3) + B(-1+1) \Rightarrow 2 = 2A \Rightarrow A = 1
  1. Therefore, the partial fraction decomposition is:
2(x+1)(x+3)=1x+11x+3\frac{2}{(x+1)(x+3)} = \frac{1}{x+1} - \frac{1}{x+3}

infoNote

Example 2:

Express 1x21\dfrac{1}{x^2 - 1} as partial fractions.

  1. Start by expressing 1x21\dfrac{1}{x^2 - 1} using the difference of squares:
1x21=1(x+1)(x1)\frac{1}{x^2 - 1} = \frac{1}{(x+1)(x-1)}
  1. Write the partial fractions decomposition:
1(x+1)(x1)Ax+1+Bx1\frac{1}{(x+1)(x-1)} \equiv \frac{A}{x+1} + \frac{B}{x-1}
  1. Multiply both sides by the common denominator (x+1)(x1)(x+1)(x-1):
1A(x1)+B(x+1)1 \equiv A(x-1) + B(x+1)
  1. Substitute values of xx to solve for AA and BB:
  • Let x=1x = 1:
1=A(11)+B(1+1)1=2BB=121 = A(1-1) + B(1+1) \Rightarrow 1 = 2B \Rightarrow B = \frac{1}{2}
  • Let x=1x = -1:
1=A(11)+B(1+1)1=2AA=121 = A(-1-1) + B(-1+1) \Rightarrow 1 = -2A \Rightarrow A = -\frac{1}{2}
  1. Therefore, the partial fraction decomposition is:
1x21=12(x+1)+12(x1)\frac{1}{x^2-1} = \frac{-1}{2(x+1)} + \frac{1}{2(x-1)}

infoNote

Example 3:

Express 9x14(x+4)(x1)2\dfrac{9x-14}{(x+4)(x-1)^2} as partial fractions.

  1. Setup Partial Fractions:
  • Write the fraction as a sum of simpler fractions:
9x14(x+4)(x1)2Ax+4+Bx1+C(x1)2\frac{9x-14}{(x+4)(x-1)^2} \equiv \frac{A}{x+4} + \frac{B}{x-1} + \frac{C}{(x-1)^2}
  • Here, (x1)2(x-1)^2 in the denominator leads to factors of (x1)(x-1) and (x1)2(x-1)^2.
  1. Combine into a Single Expression:
9x14A(x1)2+B(x+4)(x1)+C(x+4)9x - 14 \equiv A(x-1)^2 + B(x+4)(x-1) + C(x+4)
  1. Find Coefficients AA, BB, and CC by Substitution:
  • Let x=1x = 1:
9(1)14=A(11)2+B(1+4)(11)+C(1+4)9(1) - 14 = A(1-1)^2 + B(1+4)(1-1) + C(1+4)5=5CC=1-5 = 5C \Rightarrow C = -1
  • Let x=4x = -4:
9(4)14=A(41)2+B(4+4)(41)+C(4+4)9(-4) - 14 = A(-4-1)^2 + B(-4+4)(-4-1) + C(-4+4)50=25AA=2-50 = 25A \Rightarrow A = -2
  • For another value, let x=0x = 0 (a non-clever substitution):
9(0)14=A(01)2+B(0+4)(01)+C(0+4)9(0) - 14 = A(0-1)^2 + B(0+4)(0-1) + C(0+4)14=A4B+4C-14 = A - 4B + 4C

Substitute A=2A = -2 and C=1C = -1 into the equation:

14=24B4-14 = -2 - 4B - 414=64B4B=8B=2-14 = -6 - 4B \Rightarrow 4B = 8 \Rightarrow B = 2
  1. Final Partial Fraction Decomposition:
9x14(x+4)(x1)2=2x+4+2x11(x1)2\frac{9x-14}{(x+4)(x-1)^2} = \frac{-2}{x+4} + \frac{2}{x-1} - \frac{1}{(x-1)^2}

infoNote

Q5 (Jun 2010, Q3)

Express x2(x1)2(x2)\dfrac{x^2}{(x-1)^2(x-2)} in partial fractions.

  1. Setup Partial Fractions:
  • Write the fraction as a sum of simpler fractions:
x2(x1)2(x2)Ax2+Bx1+C(x1)2\frac{x^2}{(x-1)^2(x-2)} \equiv \frac{A}{x-2} + \frac{B}{x-1} + \frac{C}{(x-1)^2}
  1. Combine into a Single Expression:
x2A(x1)2+B(x1)(x2)+C(x2)x^2 \equiv A(x-1)^2 + B(x-1)(x-2) + C(x-2)
  1. Find Coefficients A, B, and C by Substitution:
  • Let x=2x = 2:
22=A(21)24=A(1)2A=42^2 = A(2-1)^2 \Rightarrow 4 = A(1)^2 \Rightarrow A = 4
  • Let x=1x = 1:
12=C(12)1=CC=11^2 = C(1-2) \Rightarrow 1 = -C \Rightarrow C = -1
  • For another value, let x=0x = 0 (to find BB):
02=A(01)2+B(01)(02)+C(02)0^2 = A(0-1)^2 + B(0-1)(0-2) + C(0-2)0=4+2B+2(1)0 = 4 + 2B + 2(-1)6=2BB=3-6 = 2B \Rightarrow B = -3
  1. Final Partial Fraction Decomposition:
x2(x1)2(x2)=4x2+3x1+1(x1)2\frac{x^2}{(x-1)^2(x-2)} = \frac{4}{x-2} + \frac{-3}{x-1} + \frac{-1}{(x-1)^2}

infoNote

Q9 (Jun 2015, Q1) (i) Express 23x+31+x\dfrac{2}{3-x} + \frac{3}{1+x} as a single fraction in its simplest form.

Solution:

2(1+x)+3(3x)(3x)(1+x)=2+2x+93x(3x)(1+x)=11x(3x)(1+x)\frac{2(1+x) + 3(3-x)}{(3-x)(1+x)} = \frac{2 + 2x + 9 - 3x}{(3-x)(1+x)} = \frac{11-x}{(3-x)(1+x)}

(ii) Hence express (23x+31+x)×x2+8x33121x2\left(\dfrac{2}{3-x} + \dfrac{3}{1+x}\right) \times \dfrac{x^2 + 8x - 33}{121 - x^2} as a single fraction in its lowest terms.

Solution:

11x(3x)(1+x)×(x+11)(x3)(11+x)(11x)=x3(3x)(1+x)\frac{11-x}{(3-x)(1+x)} \times \frac{(x+11)(x-3)}{(11+x)(11-x)} = \frac{x-3}{(3-x)(1+x)}=11+x= \frac{-1}{1+x}
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Rational Expressions

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

30 flashcards

Flashcards on Rational Expressions

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

3 quizzes

Quizzes on Rational Expressions

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

5 questions

Exam questions on Rational Expressions

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Rational Expressions

Create custom exams across topics for better practice!

Try Maths Pure exam builder

18 papers

Past Papers on Rational Expressions

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Rational Expressions you should explore

Discover More Revision Notes Related to Rational Expressions to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Rational Expressions

Improper Algebraic Fractions

user avatar
user avatar
user avatar
user avatar
user avatar

499+ studying

192KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered