Photo AI

Last Updated Sep 27, 2025

Trigonometry - Simple Identities Simplified Revision Notes

Revision notes with simplified explanations to understand Trigonometry - Simple Identities quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

203+ students studying

5.3.1 Trigonometry - Simple Identities

Trigonometric identities are fundamental relationships between trigonometric functions that are true for all values of the variables involved. These identities simplify expressions and solve trigonometric equations. Below are some of the most important and commonly used trigonometric identities.

1. Pythagorean Identities:

These identities are derived from the Pythagorean theorem applied to the unit circle.

infoNote
  • Basic Pythagorean Identity:

sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

This identity states that the square of the sine of an angle plus the square of the cosine of the same angle is always equal to 11.

  • Derived Pythagorean Identities:

1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta

This is obtained by dividing the basic Pythagorean identity by cos2θ.\cos^2 \theta.

csc2θ=1+cot2θ\csc^2 \theta = 1 + \cot^2 \theta

This is obtained by dividing the basic Pythagorean identity by sin2θ.\sin^2 \theta.

2. Reciprocal Identities:

These identities express the basic trigonometric functions in terms of their reciprocals.

infoNote
  • Sine and Cosecant:

cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta}

  • Cosine and Secant:

secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}

  • Tangent and Cotangent:

cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta}

3. Quotient Identities:

These identities express tangent and cotangent as the ratio of sine and cosine.

infoNote
  • Tangent:

tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta}

  • Cotangent:

cotθ=cosθsinθ\cot \theta = \frac{\cos \theta}{\sin \theta}

4. Co-Function Identities:

These identities show the relationship between trigonometric functions of complementary angles.

infoNote
  • Sine and Cosine:

sin(90θ)=cosθ\sin(90^\circ - \theta) = \cos \theta

cos(90θ)=sinθ\cos(90^\circ - \theta) = \sin \theta

  • Tangent and Cotangent:

tan(90θ)=cotθ\tan(90^\circ - \theta) = \cot \theta

cot(90θ)=tanθ\cot(90^\circ - \theta) = \tan \theta

  • Secant and Cosecant:

sec(90θ)=cscθ\sec(90^\circ - \theta) = \csc \theta

csc(90θ)=secθ\csc(90^\circ - \theta) = \sec \theta

5. Even-Odd Identities:

These identities show how trigonometric functions behave when their angle is negated.

infoNote
  • Sine and Cosecant (Odd Functions):

sin(θ)=sinθ\sin(-\theta) = -\sin \theta

csc(θ)=cscθ\csc(-\theta) = -\csc \theta

  • Cosine and Secant (Even Functions):

cos(θ)=cosθ\cos(-\theta) = \cos \theta

sec(θ)=secθ\sec(-\theta) = \sec \theta

  • Tangent and Cotangent (Odd Functions):

tan(θ)=tanθ\tan(-\theta) = -\tan \theta

cot(θ)=cotθ\cot(-\theta) = -\cot \theta

6. Sum and Difference Identities:

These identities are used to find the sine, cosine, or tangent of the sum or difference of two angles.

infoNote
  • Sine of a Sum/Difference:

sin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B

  • Cosine of a Sum/Difference:

cos(A±B)=cosAcosBsinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B

  • Tangent of a Sum/Difference:

tan(A±B)=tanA±tanB1tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}

7. Double Angle Identities:

These identities are used to express trigonometric functions of double angles 22 θ\theta.

infoNote
  • Sine:

sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta

  • Cosine:

cos2θ=cos2θsin2θ\cos 2\theta = \cos^2 \theta - \sin^2 \theta

Which can also be written as:

cos2θ=2cos2θ1\cos 2\theta = 2\cos^2 \theta - 1

cos2θ=12sin2θ\cos 2\theta = 1 - 2\sin^2 \theta

  • Tangent:

tan2θ=2tanθ1tan2θ\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}

8. Half-Angle Identities:

These identities are derived from the double angle identities and are used to find the values of trigonometric functions at half an angle.

infoNote
  • Sine:

sinθ2=±1cosθ2\sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}}

  • Cosine:

cosθ2=±1+cosθ2\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}

  • Tangent: tanθ2=±1cosθ1+cosθ=sinθ1+cosθ=1cosθsinθ \tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}
infoNote

Example Problem Using Identities:

Problem: Prove that sec2θtan2θ=1.\sec^2 \theta - \tan^2 \theta = 1.


Solution:

  1. Start with the identity sec2θ=1+tan2θ.\sec^2 \theta = 1 + \tan^2 \theta.
  2. Subtract tan2θ\tan^2 \theta from both sides:

sec2θtan2θ=1\sec^2 \theta - \tan^2 \theta = 1

Final Answer:

  • The identity is proved: sec2θtan2θ=1.\sec^2 \theta - \tan^2 \theta = 1.
CategoryIdentity/Form
Pythagorean Identitiessin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1
1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta
csc2θ=1+cot2θ\csc^2 \theta = 1 + \cot^2 \theta
Reciprocal Identitiescscθ=1sinθ\csc \theta = \frac{1}{\sin \theta}
secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}
cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta}
Quotient Identitiestanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta}
cotθ=cosθsinθ\cot \theta = \frac{\cos \theta}{\sin \theta}
Co-Function Identitiessin(90θ)=cosθ\sin(90^\circ • \theta) = \cos \theta
cos(90θ)=sinθ\cos(90^\circ • \theta) = \sin \theta
tan(90θ)=cotθ\tan(90^\circ • \theta) = \cot \theta
cot(90θ)=tanθ\cot(90^\circ • \theta) = \tan \theta
sec(90θ)=cscθ\sec(90^\circ • \theta) = \csc \theta
csc(90θ)=secθ\csc(90^\circ • \theta) = \sec \theta
Even-Odd Identitiessin(θ)=sinθ\sin(-\theta) = -\sin \theta
cos(θ)=cosθ\cos(-\theta) = \cos \theta
tan(θ)=tanθ\tan(-\theta) = -\tan \theta
csc(θ)=cscθ\csc(-\theta) = -\csc \theta
sec(θ)=secθ\sec(-\theta) = \sec \theta
cot(θ)=cotθ\cot(-\theta) = -\cot \theta
Sum and Difference Identitiessin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B
cos(A±B)=cosAcosBsinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B
tan(A±B)=tanA±tanB1tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
Double Angle Identitiessin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta
cos2θ=cos2θsin2θ\cos 2\theta = \cos^2 \theta • \sin^2 \theta
cos2θ=2cos2θ1\cos 2\theta = 2\cos^2 \theta • 1
cos2θ=12sin2θ\cos 2\theta = 1 • 2\sin^2 \theta
tan2θ=2tanθ1tan2θ\tan 2\theta = \frac{2\tan \theta}{1 • \tan^2 \theta}
Half-Angle Identitiessinθ2=±1cosθ2\sin \frac{\theta}{2} = \pm \sqrt{\frac{1 • \cos \theta}{2}}
cosθ2=±1+cosθ2\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}
tanθ2=±1cosθ1+cosθ=sinθ1+cosθ=1cosθsinθ\tan \frac{\theta}{2} = \pm \sqrt{\frac{1 • \cos \theta}{1 + \cos \theta}} = \frac{\sin \theta}{1 + \cos \theta} = \frac{1 • \cos \theta}{\sin \theta}

This table summarises the essential trigonometric identities, making it easier to quickly reference and apply them to various problems.

Summary:

Trigonometric identities simplify complex trigonometric expressions and solve equations. Mastery of these identities, such as Pythagorean, reciprocal, and sum/difference identities, is essential for success in trigonometry and related fields.


Trigonometric Identities

The \equiv Sign:

  • \equiv means "identical to" and is a stronger statement than =.
infoNote

Examples: 3. 2x=62x = 6: In this case, = is appropriate because there are a limited number of values that make the statement true. 4. 5x3x+2x5x \equiv 3x + 2x: In this case, no matter which value we substitute for xx, the statement is true, i.e., \equiv is appropriate.


The key identities to learn are as follows:

  1. sin2θ+cos2θ\sin^2 \theta + \cos^2 \theta \equiv 1 Learn These

  2. sinθcosθtanθ\frac{\sin \theta}{\cos \theta} \equiv \tan \theta


Common Misconception:

sinθ+cosθ≢1\sin \theta + \cos \theta \not\equiv 1

Proof of sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1 for Acute Angles

The identity is true for all values of θ\theta, but this proof only concerns acute angles.

  1. Take a right-angled triangle with hypotenuse 1.
  • Let θ\theta be an angle in the triangle.
  • Label the opposite side OO and adjacent side AA. image
  1. Define Trigonometric Ratios:
  • sinθ=OppHypsinθ=Opp (since Hypotenuse=1)\sin \theta = \frac{\text{Opp}}{\text{Hyp}} \Rightarrow \sin \theta = \text{Opp}\ (\text{since}\ \text{Hypotenuse} = 1)

  • cosθ=AdjHypcosθ=Adj (since Hypotenuse=1)\cos \theta = \frac{\text{Adj}}{\text{Hyp}} \Rightarrow \cos \theta = \text{Adj}\ (\text{since}\ \text{Hypotenuse} = 1) From the triangle:

  • O=sinθO = \sin \theta

  • A=cosθA = \cos \theta Thus, by the Pythagorean Theorem:

  • O2+A2=1sin2θ+cos2θ=1O^2 + A^2 = 1 \Rightarrow \sin^2 \theta + \cos^2 \theta = 1. \therefore Because the triangle is right-angled,

a2+b2=c2a^2 + b^2 = c^2 sin2θ+cos2θ1\sin^2\theta + \cos^2\theta \equiv 1

Proof of tanθ=sinθcosθ\tan\theta = \frac{\sin\theta}{\cos\theta} (for acute angles, although true for all angles):

  • Consider a right triangle with hypotenuse HYP\text{HYP}, opposite side OPP\text{OPP}, and adjacent side ADJ\text{ADJ}. image

From the triangle:

  • sinθ=OPPHYP\sin\theta = \frac{\text{OPP}}{\text{HYP}}
  • cosθ=ADJHYP\cos\theta = \frac{\text{ADJ}}{\text{HYP}} Thus:
sinθcosθ=OPPHYPADJHYP=OPPHYP×HYPADJ=OPPADJ=tanθ\frac{\sin\theta}{\cos\theta} = \frac{\frac{\text{OPP}}{\text{HYP}}}{\frac{\text{ADJ}}{\text{HYP}}} = \frac {\text{OPP}}{\cancel{\text{HYP}}} \times \frac {\cancel{\text{HYP}}}{\text{ADJ}}=\frac{\text{OPP}}{\text{ADJ}} = \tan\theta

These identities are useful in solving trigonometric equations.

infoNote

Example: Solve: cosθ+3sinθ=0for0θ360\quad \cos\theta + 3\sin\theta = 0 \quad \\for \quad0 \leq \theta \leq 360.


Thought Process:

  • Does the question have any square trig functions?
  • If yes, use
sin2θ+cos2θ1.\sin^2\theta + \cos^2\theta \equiv 1.
  • If no, choose one of:
sinθcosθorsinθcosθtanθ\sin\theta \equiv \cos\theta \quad \text{or} \quad \frac{\sin\theta}{\cos\theta} \equiv \tan\theta

Following the thought process to the right, it seems sensible to try to manufacture a sinθcosθ\frac{\sin\theta}{\cos\theta}.

Steps:

  1. Divide both sides by cosθ\cos\theta:
cosθcosθ+3sinθcosθ=0cosθ1+3tanθ=0\frac{\cos\theta}{\cos\theta} + 3\frac{\sin\theta}{\cos\theta} = \frac{0}{\cos\theta} \Rightarrow 1 + 3\tan\theta = 0
  1. Solve for tanθ\tan\theta:
3tanθ=1tanθ=133\tan\theta = -1 \Rightarrow \tan\theta = -\frac{1}{3}
  1. Use the arctan function:
θ=tan1(13)18.435,161.565,341.565\theta = \tan^{-1}\left(-\frac{1}{3}\right) \approx -18.435, 161.565, 341.565 \,
  1. Adjust to the correct range 0θ3600 \leq \theta \leq 360:
θ162,342(3 s.f.)\theta \approx 162, 342 \, \, \text{(3 s.f.)}

e.g. sinθ+2cos2θ=2\sin \theta + 2 \cos^2 \theta = -2

For 180θ180-180^\circ \leq \theta \leq 180^\circ

sinθ+2(1sin2θ)=2sinθ+22sin2θ=22sin2θsinθ4=0\Rightarrow \sin \theta + 2(1 - \sin^2 \theta) = -2 \\ \Rightarrow \sin \theta + 2 - 2 \sin^2 \theta = -2 \\ \Rightarrow 2 \sin^2 \theta - \sin \theta - 4 = 0 θ=1.686,1.186No valid solution\Rightarrow \theta = \xcancel{1.686}\quad \text{,} \xcancel{-1.186} \\ \therefore \text{No valid solution}

2cos2θ2 \cos^2 \theta \Rightarrow Since it has sinθ\sin \theta & cos2θ\cos^2 \theta in it, it is recommendable to try to change this using sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1

sin2θ1cos2θcos2θ1sin2θ\sin^2 \theta \equiv 1 - \cos^2 \theta \\ \cos^2 \theta \equiv 1 - \sin^2 \theta
sinθ=3sinθcosθ0θ360\sin \theta = 3 \sin \theta \cos \theta \hspace{0.5cm} 0 \leq \theta \leq 360

Incorrect Method:

÷sinθ1=3cosθcosθ=13\div \sin \theta \\ \Rightarrow 1 = 3 \cos \theta \\ \Rightarrow \cos \theta = \frac{1}{3}

Because sinθ=0\sin \theta = 0 is a solution, we have essentially divided by 0 and 'lost' the solution where sinθ=0\sin \theta = 0.

Correct Method: Factorise

sinθ3sinθcosθ)=0sinθ(13cosθ)=0sinθ=0or13cosθ=0θ=sin1(0)=0\sin \theta - 3\sin \theta \cos \theta) = 0 \\ \Rightarrow \sin \theta(1-3\cos \theta) = 0 \\ \Rightarrow \sin \theta = 0 \hspace{0.5cm} \text{or} \hspace{0.5cm} 1 - 3 \cos \theta = 0 \\ \Rightarrow \theta = \sin^{-1}(0) = 0θ=0,180,360\theta = 0, 180, 360

Beware: The limits at the beginning may be strict inequalities e.g. 0<x3600 < x \leq 360, invalidating some solutions.

θ=0,70.5,180,289,360\Rightarrow \theta = 0, 70.5, 180, 289, 3603cosθ=1cosθ=13θ=cos1(13)=70.529\Rightarrow 3 \cos \theta = 1 \\ \Rightarrow \cos \theta = \frac{1}{3} \Rightarrow \theta = \cos^{-1} \left(\frac{1}{3}\right) = 70.529 θ=70.5,289\theta = 70.5, 289^\circ

Show that

5sin2x+5sinx+4cos2xsin2x+5sinx+45 \sin^2 x + 5 \sin x + 4 \cos^2 x \equiv \sin^2 x + 5 \sin x + 45sin2x+5sinx+4cos2x=5sin2x+5sinx+4(1sin2x)=5sin2x+5sinx+44sin2x=sin2x+5sinx+45 \sin^2 x + 5 \sin x + 4 \cos^2 x \\ = 5 \sin^2 x + 5 \sin x + 4(1 - \sin^2 x) \\ = 5 \sin^2 x + 5 \sin x + 4 - 4 \sin^2 x \\ = \sin^2 x + 5 \sin x + 4

How do we know what square trig functions to change?

sin2x+5cos2x+2cosx=3\sin^2 x + 5 \cos^2 x + 2 \cos x = 3

We have a choice of using sin2x=1cos2x\sin^2 x = 1 - \cos^2 x or cos2x=1sin2x\cos^2 x = 1 - \sin^2 x

2cosx2 \cos x Cannot change this as it is not squared.

we are stuck with cosx\Rightarrow \text{we are stuck with } \cos x1cos2x+5cos2x+2cosx=3etc...\therefore 1 - \cos^2 x + 5 \cos^2 x + 2 \cos x = 3 \quad \text{etc...}

Finding One Trig Quantity Given Another

Recap of Identities:

sin2θ+cos2θ=1or(sinθ)2+(cosθ)2=1\sin^2 \theta + \cos^2 \theta = 1 \quad \text{or} \quad (\sin \theta)^2 + (\cos \theta)^2 = 1tanθsinθcosθ\tan \theta \equiv \frac{\sin \theta}{\cos \theta}

infoNote

Example: Given that sinθ=25\sin \theta = \frac{2}{5}, find cosθ\cos \theta and tanθ\tan \theta. In this case, θ\theta is acute.


Method 1**: Right-Angled Triangle**

Note: This method only works when θ\theta is acute.

  • Setup the triangle:
  • sinθ=25=OppHyp\sin \theta = \frac{2}{5} = \frac{\text{Opp}}{\text{Hyp}}
  • Calculate adjacent:
Adj=5222=21\text{Adj} = \sqrt{5^2 - 2^2} = \sqrt{21}
  • Find cosθ\cos \theta:
cosθ=ADJHYP=215\cos \theta = \frac{\text{ADJ}}{\text{HYP}} = \frac{\sqrt{21}}{5}
  • Find tanθ\tan \theta:
tanθ=OPPADJ=221×2121=22121\tan \theta = \frac{\text{OPP}}{\text{ADJ}} = \frac{2}{\sqrt{21}} \times \frac {\sqrt{21}}{\sqrt{21}}= \frac{2 \sqrt{21}}{21}

Method 2: sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

Note: Works with any angled angle.

sinθ=25\sin \theta = \frac{2}{5}

Use the identity:

sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1(25)2+cos2θ1\left(\frac{2}{5}\right)^2 + \cos^2 \theta \equiv 1425+cos2θ1cos2θ=2125\Rightarrow \frac{4}{25} + \cos^2 \theta \equiv 1 \\\Rightarrow \cos^2 \theta = \frac{21}{25}cosθ=±215\Rightarrow \cos \theta = \pm \frac{\sqrt{21}}{5}

Note**:** cosθ\cos \theta is positive since θ\theta is acute.

  • Find tanθ\tan \theta:
tanθ=sinθcosθ=25215=22121\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}} = \frac{2 \sqrt{21}}{21}
infoNote

Example: Given that θ\theta is obtuse, find cosθ\cos \theta when sinθ=12\sin \theta = \frac{1}{2}.

  • sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1
(12)2+cos2θ=114+cos2θ=1cos2θ=34\left(\frac{1}{2}\right)^2 + \cos^2 \theta = 1 \Rightarrow \frac{1}{4} + \cos^2 \theta = 1 \Rightarrow \cos^2 \theta = \frac{3}{4}cosθ=±32\Rightarrow \cos \theta = \pm \frac{\sqrt{3}}{2}
  • Since θ\theta is obtuse, cosθ=32\cos \theta = -\frac{\sqrt{3}}{2}.

Given that θ\theta is reflex and cosθ=32\cos \theta = \frac{\sqrt{3}}{2}, find sinθ\sin \theta.

  • sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1
sin2θ+(32)2=1sin2θ=134=14\sin^2 \theta + \left(\frac{\sqrt{3}}{2}\right)^2 = 1 \Rightarrow \sin^2 \theta = 1 - \frac{3}{4} = \frac{1}{4}sinθ=±14=±12\Rightarrow \sin \theta = \pm \sqrt{\frac{1}{4}} = \pm \frac{1}{2}
  • Since θ\theta is reflex, sinθ=12\sin \theta = -\frac{1}{2}.

How to do a good proof

infoNote

Example: (OCR 4722, Q6, June 2010)

  1. Show that sin2xcos2x1sin2xtan2x1\dfrac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} \equiv \tan^2 x - 1.
  2. Hence solve the equation sin2xcos2x1sin2x=5tanx,for 0x360\dfrac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = 5 - \tan x, \quad \\ for\ 0^\circ \leq x \leq 360^\circ.
  • Tip: You should always start from the LHS, and your last line should be the RHS.

Part (i):

LHS=sin2xcos2x1sin2x=sin2xcos2xcos2x=sin2xcos2xcos2xcos2x=tan2x1\text{LHS} = \frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x} = \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\cos^2 x} = \tan^2 x - 1

Note:

sin2x+cos2x1sin2xcos2x=tan2x\sin^2 x + \cos^2 x \equiv 1 \Rightarrow \frac{\sin^2 x}{\cos^2 x} = \tan^2 x sin2xcos2xcos2x=tan2x1\frac{\sin^2 x - \cos^2 x}{\cos^2 x} = \tan^2 x - 1

Part (ii):

tan2x1=5tanx\tan^2 x - 1 = 5 - \tan x tan2x+tanx6=0\tan^2 x + \tan x - 6 = 0 (tanx2)(tanx+3)=0(\tan x - 2)(\tan x + 3) = 0 tanx=2ortanx=3\tan x = 2 \quad \text{or} \quad \tan x = -3 x=tan1(2)63.435,243.435x = \tan^{-1}(2) \approx 63.435^\circ, 243.435^\circ x=tan1(3)71.565108.435,288.435x = \tan^{-1}(-3) \approx \xcancel{-71.565^\circ} \Rightarrow 108.435^\circ, 288.435^\circ

Visual representation of solutions on a trigonometric graph.

x=63.4,108,243,288\therefore x = 63.4^\circ, 108^\circ, 243^\circ, 288^\circ image

:::


Proofs Involving Trigonometric Functions

Key Points:

  • Proofs usually go from left to right (i.e., the right-hand side should be the last thing you write).
  • Trig proofs do not involve rearranging algebra. We simply use identities to re-present what is already true.

Prove each of the following identities:

a. cosec2xsec2x=cot2xtan2x\cosec^2 x - \sec^2 x = \cot^2 x - \tan^2 x

  1. Use Pythagorean identities to re-present the LHS as our target expression.
  • Notice cosec2x\cosec^2 x is not part of our target expression, so work at eliminating this from our given expression.
  1. sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1
(÷sin2θ)1+cot2θcosec2θ\xRightarrow{(\div\sin^2\theta)} 1 + \cot^2 \theta \equiv \cosec^2 \theta
  • LHS = cosec2xsec2x\cosec^2 x - \sec^2 x =1+cot2xsec2x= 1 + \cot^2 x - \sec^2 x

We need this in our answer. Therefore this term is to remain

  • tan2θ+1=sec2θ\tan^2 \theta + 1 = \sec^2 \theta
LHS=1+cot2x(1+tan2x)=cot2xtan2x(proved)\Rightarrow LHS = \cancel1 + \cot^2 x - (\cancel1 + \tan^2 x) = \cot^2 x - \tan^2 x \quad \text{(proved)}

e. (tanx+cotx)2=sec2x+cosec2x(\tan x + \cot x)^2 = \sec^2 x + \cosec^2 x

  1. sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1 tan2θ+1sec2θ\tan^2 \theta + 1 \equiv \sec^2 \theta

cot2θ+1cosec2θ\cot^2 \theta + 1 \equiv \cosec^2 \theta

  1. LHS:
(tanx+cotx)2=tan2x+2tanxcotx+cot2x(\tan x + \cot x)^2 = \tan^2 x + 2\tan x \cot x + \cot^2 x
  • Use identities:
tan2x+1=sec2x,cot2x+1=cosec2x\tan^2 x + 1 = \sec^2 x, \quad \cot^2 x + 1 = \cosec^2 x
  • Rewrite LHS:
=tan2x+cot2x+2LHS=(sec2x1)+2+(cosec2x1)sec2x+cosec2x(proved)= \tan^2 x + \cot^2 x + 2 \\ \Rightarrow LHS = (\sec^2 x -\cancel{1})+\cancel2+ (\cosec^2 x - \cancel1) \\ \Rightarrow \sec^2 x + \cosec^2 x \quad \text{(proved)}

Note: Only when the Pythagorean formula gives a correct proof should you use sec2x\sec^2 x.

  • cosecx=1sinx,cotx=cosxsinx,secx=1cosx\cosec x = \dfrac{1}{\sin x}, \quad \cot x = \dfrac{\cos x}{\sin x}, \quad \sec x = \dfrac{1}{\cos x}

h. Prove that sec4x+tan4x2sec2xtan2x+1\sec^4 x + \tan^4 x \equiv 2 \sec^2 x \tan^2 x + 1

sec4x+tan4x=sec2xsec2x+tan2xtan2x\sec^4 x + \tan^4 x = \sec^2 x \sec^2 x + \tan^2 x \tan^2 x =(tan2x+1)sec2x+(sec2x1)tan2x= (\tan^2 x + 1)\sec^2 x + (\sec^2 x - 1)\tan^2 x =tan2xsec2x+sec2x+sec2xtan2xtan4x= \tan^2 x \sec^2 x + \sec^2 x + \sec^2 x \tan^2 x - \tan^4 x =2tan2xsec2x+(sec2xtan2x)(* using tan2xsec2x1)= 2\tan^2 x \sec^2 x + (\sec^2 x - \tan^2 x) \quad \text{(* using } \tan^2 x - \sec^2 x \equiv 1 \text{)} =2tan2xsec2x+1= 2\tan^2 x \sec^2 x + 1

Supporting Identities Used

sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1 tan2θ+1sec2θ\tan^2 \theta + 1 \equiv \sec^2 \theta tan2θsec2θ1()\Rightarrow \tan^2 \theta - \sec^2 \theta \equiv 1 \quad (\ast)

Reciprocal Pythagorean Identities

The first Pythagorean identity encountered was sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1.

From this, two more identities can be derived:

  1. sin2θ+cos2θ1\sin^2\theta + \cos^2\theta \equiv 1 Dividing each side by cos2θ\cos^2\theta:
sin2θcos2θ+cos2θcos2θ1cos2θ\frac {\sin^2\theta}{\cos^2\theta}+\frac {\cos^2\theta}{\cos^2\theta} \equiv \frac {1}{\cos^2\theta} tan2θ+1sec2θ\tan^2\theta + 1 \equiv \sec^2\theta
  1. sin2θ+cos2θ1\sin^2\theta + \cos^2\theta \equiv 1 Dividing each side by sin2θ\sin^2\theta:
sin2θsin2θ+cos2θsin2θ1sin2θ\frac {\sin^2\theta}{\sin^2\theta}+\frac {\cos^2\theta}{\sin^2\theta} \equiv \frac {1}{\sin^2\theta} 1+cot2θcsc2θ1 + \cot^2\theta \equiv \csc^2\theta
infoNote

Example: Solve tan2θ2secθ2=0for0θ2π\tan^2\theta - 2\sec\theta - 2 = 0 \quad for \quad 0 \leq \theta \leq 2\pi.

tan2θ+1sec2θsec2θ1=tanθ\tan^2\theta + 1 \equiv \sec^2\theta \Rightarrow \sec^2\theta - 1 = \tan\thetasec2θ12secθ2=0\sec^2\theta - 1 - 2\sec\theta - 2 = 0sec2θ2secθ3=0\sec^2\theta - 2\sec\theta - 3 = 0(secθ3)(secθ+1)=0(\sec\theta - 3)(\sec\theta + 1) = 0secθ=3orsecθ=1\sec\theta = 3 \quad \text{or} \quad \sec\theta = -1

Reciprocal of both sides

cosθ=13orcosθ=1\cos\theta = \frac{1}{3} \quad \text{or} \quad \cos\theta = -1θ=arccos(13)1.2310,2π1.2310\theta = \arccos\left(\frac{1}{3}\right) \approx 1.2310, \quad 2\pi - 1.2310θ=arccos(1)=π\theta = \arccos(-1) = \piθ=1.231,π,5.052\therefore \theta = 1.231, \pi, 5.052

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Trigonometry - Simple Identities

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

50 flashcards

Flashcards on Trigonometry - Simple Identities

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

5 quizzes

Quizzes on Trigonometry - Simple Identities

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

4 questions

Exam questions on Trigonometry - Simple Identities

Boost your confidence with real exam questions.

Try Maths Pure Questions

2 exams created

Exam Builder on Trigonometry - Simple Identities

Create custom exams across topics for better practice!

Try Maths Pure exam builder

18 papers

Past Papers on Trigonometry - Simple Identities

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Trigonometry - Simple Identities you should explore

Discover More Revision Notes Related to Trigonometry - Simple Identities to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Trigonometric Equations

Linear Trigonometric Equations

user avatar
user avatar
user avatar
user avatar
user avatar

420+ studying

196KViews

96%

114 rated

Trigonometric Equations

Quadratic Trigonometric Equations

user avatar
user avatar
user avatar
user avatar
user avatar

405+ studying

192KViews

96%

114 rated

Trigonometric Equations

Strategy for Trigonometric Equations

user avatar
user avatar
user avatar
user avatar
user avatar

245+ studying

187KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered