Photo AI

Last Updated Sep 27, 2025

Trigonometry - Further Identities Simplified Revision Notes

Revision notes with simplified explanations to understand Trigonometry - Further Identities quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

392+ students studying

5.5.3 Trigonometry - Further Identities

In trigonometry, further identities extend beyond the basic identities like the Pythagorean identities, reciprocal identities, and quotient identities. These additional identities are useful in simplifying expressions, solving equations, and analysing trigonometric functions. Below are some of the most important further identities:

1. Sum and Difference Identities:

These identities allow you to find the sine, cosine, or tangent of the sum or difference of two angles.

  • Sine of a Sum/Difference: sin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B
    • Example: sin(75)=sin(45+30)=sin45cos30+cos45sin30\sin(75^\circ) = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ
  • Cosine of a Sum/Difference: cos(A±B)=cosAcosBsinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B
    • Example: cos(15)=cos(4530)=cos45cos30+sin45sin30\cos(15^\circ) = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ
  • Tangent of a Sum/Difference: tan(A±B)=tanA±tanB1tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
    • Example: tan(75)=tan(45+30)=tan45+tan301tan45tan30\tan(75^\circ) = \tan(45^\circ + 30^\circ) = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ}

2. Double Angle Identities:

These identities express trigonometric functions of double angles (22 θ\theta) in terms of single angles.

  • Sine of a Double Angle: sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
  • Cosine of a Double Angle: cos2θ=cos2θsin2θ\cos 2\theta = \cos^2 \theta - \sin^2 \theta This identity can also be written as: cos2θ=2cos2θ1\cos 2\theta = 2\cos^2 \theta - 1 or cos2θ=12sin2θ\cos 2\theta = 1 - 2\sin^2 \theta
  • Tangent of a Double Angle: tan2θ=2tanθ1tan2θ\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}

3. Half-Angle Identities:

These identities express trigonometric functions of half angles (θ2\frac{\theta}{2}) in terms of the full angle.

  • Sine of a Half Angle: sinθ2=±1cosθ2\sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}} The sign ±\pm depends on the quadrant in whichθ2 \frac{\theta}{2} lies.
  • Cosine of a Half Angle: cosθ2=±1+cosθ2\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}} Again, the sign± \pm depends on the quadrant.
  • Tangent of a Half Angle: tanθ2=±1cosθ1+cosθ=sinθ1+cosθ=1cosθsinθ\tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}

4. Product-to-Sum Identities:

These identities convert products of sine and cosine into sums, making them easier to integrate or simplify.

  • Product of Sines: sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]
  • Product of Cosines: cosAcosB=12[cos(AB)+cos(A+B)]\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]
  • Product of Sine and Cosine: sinAcosB=12[sin(A+B)+sin(AB)]\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]

5. Sum-to-Product Identities:

These identities convert sums or differences of sines and cosines into products, which can be useful in solving equations.

  • Sum of Sines: sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)
  • Difference of Sines: sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)
  • Sum of Cosines: cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right)
  • Difference of Cosines: cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)

6. Co-Function Identities:

These identities show the relationship between trigonometric functions of complementary angles.

  • Sine and Cosine: sin(90θ)=cosθ\sin(90^\circ - \theta) = \cos \theta cos(90θ)=sinθ\cos(90^\circ - \theta) = \sin \theta
  • Tangent and Cotangent: tan(90θ)=cotθ\tan(90^\circ - \theta) = \cot \theta cot(90θ)=tanθ\cot(90^\circ - \theta) = \tan \theta
  • Secant and Cosecant: sec(90θ)=cscθ\sec(90^\circ - \theta) = \csc \theta csc(90θ)=secθ\csc(90^\circ - \theta) = \sec \theta

7. Even-Odd Identities:

These identities describe how trigonometric functions behave when their input is negated.

  • Sine and Cosecant (Odd Functions): sin(θ)=sinθ\sin(-\theta) = -\sin \theta csc(θ)=cscθ\csc(-\theta) = -\csc \theta
  • Cosine and Secant (Even Functions): cos(θ)=cosθ\cos(-\theta) = \cos \theta sec(θ)=secθ\sec(-\theta) = \sec \theta
  • Tangent and Cotangent (Odd Functions): tan(θ)=tanθ\tan(-\theta) = -\tan \theta cot(θ)=cotθ\cot(-\theta) = -\cot \theta

Now let's look at some examples:

infoNote

Example 1: Using Compound Angle Identities

Question

Prove that sin(75)=sin(45+30)\sin(75^\circ) = \sin(45^\circ + 30^\circ)

Solution

We will use the compound angle identity for sine:

sin(A+B)=sin(A)cos(B)+cos(A)sin(B)\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)

Here, A=45A = 45^\circ and B=30B = 30^\circ

  1. Substitute the values into the identity:
sin(75)=sin(45)cos(30)+cos(45)sin(30)\sin(75^\circ) = \sin(45^\circ)\cos(30^\circ) + \cos(45^\circ)\sin(30^\circ)
  1. Use known values of sine and cosine for these standard angles:
  • sin(45)=12\sin(45^\circ) = \frac{1}{\sqrt{2}}
  • cos(45)=12\cos(45^\circ) = \frac{1}{\sqrt{2}}
  • sin(30)=12\sin(30^\circ) = \frac{1}{2}
  • cos(30)=32\cos(30^\circ) = \frac{\sqrt{3}}{2}
  1. Substitute these values:
sin(75)=(12×32)+(12×12)\sin(75^\circ) = \left( \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} \right) + \left( \frac{1}{\sqrt{2}} \times \frac{1}{2} \right)=322+122= \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}
  1. Factor out 122\frac{1}{2\sqrt{2}} :
sin(75)=122(3+1)\sin(75^\circ) = \frac{1}{2\sqrt{2}} \left( \sqrt{3} + 1 \right)

Thus, the identity holds, and the value of sin(75)\sin(75^\circ) is verified.


infoNote

Example 2: Using Double Angle Identities

Question

Given that sin(x)=35\sin(x) = \frac{3}{5} and xx is in the first quadrant, find the exact value of cos(2x)\cos(2x).

Solution

We use the double angle identity for cosine:

cos(2x)=12sin2(x)\cos(2x) = 1 - 2\sin^2(x)
  1. First, we are given sin(x)=35\sin(x) = \frac{3}{5} . To find sin2(x)\sin^2(x), square both sides:
sin2(x)=(35)2=925\sin^2(x) = \left(\frac{3}{5}\right)^2 = \frac{9}{25}
  1. Substitute sin2(x) \sin^2(x) into the double angle identity:
cos(2x)=12(925)\cos(2x) = 1 - 2\left(\frac{9}{25}\right)cos(2x)=11825\cos(2x) = 1 - \frac{18}{25}
  1. Simplify:
cos(2x)=25251825=725\cos(2x) = \frac{25}{25} - \frac{18}{25} = \frac{7}{25}

Thus, the exact value of cos(2x)\cos(2x) is 725\frac{7}{25}


infoNote

Example 3: Simplifying Trigonometric Expressions

Question

Simplify the expression:

sin(2x)1+cos(2x)\frac{\sin(2x)}{1 + \cos(2x)}

Solution

  1. First, use the double angle identities for sine and cosine:
sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x)cos(2x)=12sin2(x)\cos(2x) = 1 - 2\sin^2(x)
  1. Substitute these into the expression:
2sin(x)cos(x)1+(12sin2(x))\frac{2\sin(x)\cos(x)}{1 + (1 - 2\sin^2(x))}
  1. Simplify the denominator:
1+(12sin2(x))=22sin2(x)=2(1sin2(x))1 + (1 - 2\sin^2(x)) = 2 - 2\sin^2(x) = 2(1 - \sin^2(x))
  1. Since 1sin2(x)=cos2(x)1 - \sin^2(x) = \cos^2(x), the expression becomes:
2sin(x)cos(x)2cos2(x)\frac{2\sin(x)\cos(x)}{2\cos^2(x)}
  1. Simplify the fraction:
=sin(x)cos(x)= \frac{\sin(x)}{\cos(x)}
  1. This simplifies further to:
tan(x)\tan(x)

Thus, the simplified expression is tan(x)\tan(x).


infoNote

Example 4: Solving Trigonometric Equations

Question

Solve the equation 2cos2(x)sin(x)=02\cos^2(x) - \sin(x) = 0 for 0x360 0 \leq x \leq 360^\circ.

Solution

  1. Use the Pythagorean identity cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x), but in this case, it's easier to rearrange the equation:
2cos2(x)=sin(x)2\cos^2(x) = \sin(x)
  1. Divide through by cos(x)\cos(x) (assuming cos(x)0\cos(x) \neq 0 ):
2cos(x)=tan(x)2\cos(x) = \tan(x)

Summary:

infoNote
  • Sum and Difference Identities help in finding the sine, cosine, and tangent of the sum or difference of two angles.
  • Double Angle and Half Angle Identities simplify trigonometric expressions involving double or half angles.
  • Product-to-Sum and Sum-to-Product Identities convert products into sums and vice versa, which is useful in simplifying trigonometric expressions.
  • Co-Function and Even-Odd Identities describe relationships between trigonometric functions for complementary angles and the effects of negating the angle.
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Trigonometry - Further Identities

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

50 flashcards

Flashcards on Trigonometry - Further Identities

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

5 quizzes

Quizzes on Trigonometry - Further Identities

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

2 questions

Exam questions on Trigonometry - Further Identities

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Trigonometry - Further Identities

Create custom exams across topics for better practice!

Try Maths Pure exam builder

18 papers

Past Papers on Trigonometry - Further Identities

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Trigonometry - Further Identities you should explore

Discover More Revision Notes Related to Trigonometry - Further Identities to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Reciprocal & Inverse Trigonometric Functions

Reciprocal Trig Functions - Definitions

user avatar
user avatar
user avatar
user avatar
user avatar

366+ studying

191KViews

96%

114 rated

Reciprocal & Inverse Trigonometric Functions

Reciprocal Trig Functions - Graphs

user avatar
user avatar
user avatar
user avatar
user avatar

210+ studying

183KViews

96%

114 rated

Reciprocal & Inverse Trigonometric Functions

Inverse Trig Functions

user avatar
user avatar
user avatar
user avatar
user avatar

473+ studying

185KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered