Photo AI

Last Updated Sep 27, 2025

Chain Rule Simplified Revision Notes

Revision notes with simplified explanations to understand Chain Rule quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

259+ students studying

7.3.3 Chain Rule

The chain rule is a fundamental technique in calculus used to differentiate composite functions—functions that are composed of two or more functions. The chain rule essentially states that to differentiate a composite function, you differentiate the outer function and multiply it by the derivative of the inner function.

1. Basic Concept of the Chain Rule:

infoNote

If you have a function y=f(g(x))y = f(g(x)), where g(x)g(x) is a function inside another function f, the derivative of yy with respect to xx is given by: dydx=f(g(x))g(x)\frac{dy}{dx} = f'(g(x)) \cdot g'(x)

  • f(g(x))f'(g(x)) is the derivative of the outer function evaluated at the inner function g(x)g(x).
  • g(x)g'(x) is the derivative of the inner function g(x)g(x) with respect to xx.

2. Notation for the Chain Rule:

infoNote

In Leibniz notation, if y depends on u, and u depends on x (i.e., y=f(u) and u=g(x)y = f(u)\ and\ u = g(x)), the chain rule can be written as: dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} This shows that to find the derivative of y with respect to x, you multiply the derivative of y with respect to u by the derivative of u with respect to x.

3. Applying the Chain Rule:

infoNote

To apply the chain rule effectively, follow these steps:

  1. Identify the Outer and Inner Functions:
  • Determine the outer function f(u)f(u) and the inner function u=g(x)u = g(x).
  1. Differentiate the Outer Function:
  • Differentiate f(u)f(u) with respect to uu, then substitute g(x)g(x) back into the result.
  1. Differentiate the Inner Function:
  • Differentiate g(x)g(x) with respect to xx.
  1. Multiply the Results:
  • Multiply the derivative of the outer function by the derivative of the inner function.

4. Examples Using the Chain Rule:

infoNote

Example 1: Differentiate y=sin(3x)y = \sin(3x)


  • Step 1: Identify the functions:
  • Outer function: f(u)=sin(u)f(u) = \sin(u)
  • Inner function: u=3xu = 3x

  • Step 2: Differentiate the outer function: dfdu=cos(u)\frac{df}{du} = \cos(u)

  • Step 3: Differentiate the inner function: dudx=3\frac{du}{dx} = 3

  • Step 4: Apply the chain rule: dydx=cos(3x)3=3cos(3x)\frac{dy}{dx} = \cos(3x) \cdot 3 = 3\cos(3x)
infoNote

Example 2: Differentiate y=ln(5x2+1)y = \ln(5x^2 + 1)


  • Step 1: Identify the functions:
  • Outer function: f(u)=ln(u)f(u) = \ln(u)
  • Inner function: u=5x2+1u = 5x^2 + 1

  • Step 2: Differentiate the outer function: dfdu=1u\frac{df}{du} = \frac{1}{u}

  • Step 3: Differentiate the inner function: dudx=10x\frac{du}{dx} = 10x

  • Step 4: Apply the chain rule: dydx=15x2+110x=10x5x2+1\frac{dy}{dx} = \frac{1}{5x^2 + 1} \cdot 10x = \frac{10x}{5x^2 + 1}
infoNote

Example 3: Differentiate y=e1xy = e^{-\frac{1}{x}}


  • Step 1: Identify the functions:
  • Outer function: f(u)=euf(u) = e^u
  • Inner function: u=1xu = -\frac{1}{x}

  • Step 2: Differentiate the outer function: dfdu=eu\frac{df}{du} = e^u

  • Step 3: Differentiate the inner function: dudx=1x2\frac{du}{dx} = \frac{1}{x^2}

  • Step 4: Apply the chain rule: dydx=e1x1x2\frac{dy}{dx} = e^{-\frac{1}{x}} \cdot \frac{1}{x^2}
  • So,dydx=e1xx2. \frac{dy}{dx} = \frac{e^{-\frac{1}{x}}}{x^2}.

5. Chain Rule with Higher-Order Functions:

The chain rule can be applied multiple times when dealing with functions within functions within functions. For example, if y=f(g(h(x)))y = f(g(h(x))), the derivative is: dydx=f(g(h(x)))g(h(x))h(x)\frac{dy}{dx} = f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x)

infoNote

Example: Differentiate y=sin(ln(3x))y = \sin(\ln(3x))


  • Step 1: Identify the functions:
  • Outermost function: f(u)=sin(u)f(u) = \sin(u)
  • Middle function: g(v)=ln(v)g(v) = \ln(v)
  • Innermost function: h(x)=3xh(x) = 3x

  • Step 2: Differentiate each function:
  • dfdu=cos(u)\frac{df}{du} = \cos(u)
  • dgdv=1v\frac{dg}{dv} = \frac{1}{v}
  • dhdx=3\frac{dh}{dx} = 3

  • Step 3: Apply the chain rule: dydx=cos(ln(3x))13x3=cos(ln(3x))x\frac{dy}{dx} = \cos(\ln(3x)) \cdot \frac{1}{3x} \cdot 3 = \frac{\cos(\ln(3x))}{x}

Summary:

infoNote
  • The chain rule is essential for differentiating composite functions, allowing you to break down complex expressions into manageable parts.
  • By identifying the inner and outer functions, differentiating each, and then multiplying, you can accurately compute derivatives for a wide range of functions.
  • Mastery of the chain rule is crucial for solving advanced calculus problems and applications in various scientific and engineering disciplines.

Differentiation: The Chain Rule

Some New Derivatives

Interesting Fact

If y=exdydx=ex\text{If } y = e^x \Rightarrow \frac{dy}{dx} = e^x e=limx(1+1xx)e = \lim_{x \to \infty} \left (1+\frac {1}{x}^x \right )

Proof

ddx(ex)=limh0(ex+hexh)=limh0(exehexh)\frac{d}{dx}(e^x) = \lim_{h \to 0} \left (\frac{e^{x+h} - e^x}{h}\right ) = \lim_{h \to 0} \left (\frac{e^x e^h - e^x}{h}\right) =limh0(ex(eh1)h)=exlimh0(eh1h)= \lim_{h \to 0} \left( \frac{e^x (e^h - 1)}{h} \right) = e^x \lim_{h \to 0} \left( \frac{e^h - 1}{h} \right)

Using the Maclaurin expansion:

ex=exp(x)=1+x+x22!+x33!++xrr! for all xe^x = \exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots +\frac{x^r}{r!} \text{ for all } x eh=1+h+h22+h36+h424 then the abovee^h = 1 + h + \frac{h^2}{2} + \frac{h^3}{6} + \frac{h^4}{24}\ldots \Rightarrow \text{ then the above}

is equal to

exlimh0((1+h+h22+h36+h424+)1h)e^x \lim_{h \to 0} \left( \frac{\left (\cancel1 + h + \frac{h^2}{2} + \frac{h^3}{6} + \frac{h^4}{24}+ \ldots\right) \cancel {- 1}}{h} \right) =exlimh0(1+h2+h26+)=ex×1=ex= e^x \lim_{h \to 0} \left( 1 + \frac{h}{2} + \frac{h^2}{6} + \ldots \right) = e^x \times 1 = e^x

Each of these terms become 0 as h0h \rightarrow 0

Derivative of the Natural Log Function

ddx(ln(x))=1x\frac{d}{dx} (\ln(x)) = \frac{1}{x} Let y=ln(x)x=ey\text{Let } y = \ln(x) \Rightarrow x = e^y So dxdy=eydydx=1ey1x\text{So } \frac{dx}{dy} = e^y \Rightarrow \frac{dy}{dx} = \frac{1}{e^y} \Rightarrow \frac{1}{x}

(Reciprocal of both sides)


Chain Rule for Differentiation

This method is applicable when differentiating a function wrapped within another function.

infoNote

Examples:

  • ex2+2e^{x^2 + 2} ✔️
  • ln(2x+3)\ln(2x + 3) ✔️
  • xexx e^x ❌(Two separate functions multiplied together)
infoNote

Example: If y=ex2+2y = e^{x^2 + 2}, find dydx\frac{dy}{dx} 5. Let uu = "the most deeply nested part of the function," then write u = and then yy = in terms of uu.

u=x2+2y=euu = x^2 + 2 \quad y = e^u
  1. Find dudx\dfrac{du}{dx} and dydu\dfrac{dy}{du}.
dudx=2xdydu=eu\dfrac{du}{dx} = 2x\\ \dfrac{dy}{du} = e^u
  1. Find dydx\dfrac{dy}{dx} using:
dydx=dydu×dudx\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}

Fact:

dudx×dydu=dydx\frac{\cancel{du}}{dx} \times \frac{dy}{\cancel{du}} = \frac{dy}{dx}dydx=2xeu=2xex2+2\frac{dy}{dx} = 2x e^u = 2x e^{x^2 + 2}

infoNote

Example: If y=(x4+3)10y = (x^4 + 3)^{10}, find dydx\dfrac{dy}{dx} 7. Let u=x4+3u = x^4 + 3, then y=u10y = u^{10}.

dudx=4x3dydu=10u9\frac{du}{dx} = 4x^3 \\ \frac{dy}{du} = 10u^9dydx=40x3u9=40x3(x4+3)9\frac{dy}{dx} = 40x^3 u^9 = 40x^3 (x^4 + 3)^9

infoNote

Example: Find f(x)f'(x) for f(x)=ln(ex+x2)f(x) = \ln(e^x + x^2).

  1. Let u=ex+x2u = e^x + x^2.
dudx=ex+2x\Rightarrow \frac{du}{dx} = e^x + 2x
  1. y=ln(u)y = \ln(u).
dydu=1u\Rightarrow \frac{dy}{du} = \frac{1}{u}
  1. Therefore,
dydx=(ex+2x)×1u=ex+2xex+x2\frac{dy}{dx} = (e^x + 2x) \times \frac{1}{u} = \frac{e^x + 2x}{e^x + x^2}

infoNote

Example: Find the first derivative of y=12x3y = \dfrac{1}{\sqrt{2x-3}}.

  1. Let y=(2x3)12y = (2x-3)^{-\frac{1}{2}}.

  1. Let u=2x3u = 2x-3.
dudx=2\Rightarrow \frac{du}{dx} = 2
  1. y=u12y = u^{-\frac{1}{2}}.
dydu=12u32\Rightarrow \frac{dy}{du} = -\frac{1}{2}u^{-\frac{3}{2}}
  1. Therefore,
dydx=2×12u32=(2x3)32\frac{dy}{dx} = \cancel2 \times -\frac{1}{\cancel2} u^{-\frac{3}{2}} = - (2x-3)^{-\frac{3}{2}}

Shortcut Method

infoNote

Example: If y=ex2+2y = e^{x^2+2}, find dydx\dfrac{dy}{dx}.

  1. Differentiate the "outer" expression as a whole.
y=e(x2+2)y = e^{(x^2+2)}
  1. Multiply by the inner expression differentiated.
dydx=e(x2+2)×2x=2xex2+2\frac{dy}{dx} = e^{(x^2+2)} \times 2x = 2x e^{x^2+2}

infoNote

Example: y=(x43)10y = (x^4 - 3)^10, find dydx\dfrac{dy}{dx}.

  1. y=(x43)10y = (x^4 - 3)^{10}
dydx=10(x43)9×4x3=40x3(x43)9\frac{dy}{dx} = 10(x^4-3)^9 \times 4x^3 = 40x^3(x^4-3)^9

infoNote

Example: Find f(x)f'(x) for f(x)=ln(ex+x2)f(x) = \ln(e^x + x^2).

  1. f(x)=ln(ex+x2)f(x) = \ln(e^x + x^2)
f(x)=1(ex+x2)×(ex+2x)=ex+2xex+x2f'(x) = \frac{1}{(e^x + x^2)} \times (e^x + 2x) = \frac{e^x + 2x}{e^x + x^2}

infoNote

Example: Find the equation of the tangent to y=2x+1y = \sqrt{2x+1} when x=4x = 4.

  1. y=(2x+1)12y = (2x+1)^{\frac{1}{2}}
dydx=12(2x+1)12×2\Rightarrow \frac{dy}{dx} = \frac{1}{\cancel2}(2x+1)^{-\frac{1}{2}} \times \cancel2=(2x+1)12= (2x+1)^{-\frac{1}{2}}
  1. Let x=4x = 4:
dydx=(2(4)+1)12=13\frac{dy}{dx} = (2(4)+1)^{-\frac{1}{2}} = \frac{1}{3}
  1. Therefore,
y=(2(4)+1)12=3y = (2(4) + 1)^{\frac{1}{2}} = 3
  1. Gradient = 13\frac{1}{3}, Point = (4,3)(4, 3).

  1. Equation of the tangent:
y3=13(x4)3y9=x4x3y+5=0y - 3 = \frac{1}{3}(x-4) \\ \Rightarrow 3y - 9 = x - 4 \\ \Rightarrow x - 3y + 5 = 0

Note:

ddx(ln(x))=1x\frac{d}{dx}(\ln(x)) = \frac{1}{x} ddx(ln(2x))=12x×2=1x\frac{d}{dx}(\ln(2x)) = \frac{1}{\cancel2x} \times \cancel 2 = \frac{1}{x} ddx(ln(x))=ddx(ln(2x))\therefore \frac{d}{dx}(\ln(x)) = \frac{d}{dx}(\ln(2x))
infoNote

Q6. (Jan 2010, Q5) The equation of a curve is y=(x2+1)8y = (x^2 + 1)^8.

(i) Find an expression for dydx\frac{dy}{dx} and hence show that the only stationary point on the curve is the point for which x=0x = 0.

  1. dydx=8(x2+1)7×2x=16x(x2+1)7=0\dfrac{dy}{dx} = 8(x^2 + 1)^7 \times 2x = 16x(x^2 + 1)^7 = 0
  2. Since x=016x=0x=0x = 0 \Rightarrow 16x = 0 \Rightarrow x = 0 or x2+1=0x^2+1 = 0 (which has no real root).
  3. Therefore, x=0x = 0 is the only stationary point.

infoNote

Q2. (Jun 2006, Q1) Find the equation of the tangent to the curve y=4x+1y = \sqrt{4x+1} at the point (2,3)(2, 3).

  1. y=(4x+1)12dydx=12(4x+1)12×4=2(4x+1)12y = (4x+1)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2}(4x+1)^{-\frac{1}{2}} \times 4 = 2(4x+1)^{-\frac{1}{2}}
  2. At x=2x = 2,
dydx=2(4(2)+1)12=23\frac{dy}{dx} = 2(4(2)+1)^{-\frac{1}{2}} = \frac{2}{3}
  1. Equation of the tangent:
y3=23(x2)3y9=2x42x3y+5=0y - 3 = \frac{2}{3}(x-2)\\ \Rightarrow 3y - 9 = 2x - 4 \\\Rightarrow 2x - 3y + 5 = 0
infoNote

e.g. Justify that y=2x+1y = \sqrt{2x+1} has no stationary points.

  1. y=(2x+1)12dydx=12(2x+1)12×2=(2x+1)12=0y = (2x+1)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{\cancel2}(2x+1)^{-\frac{1}{2}} \times \cancel2 = (2x+1)^{-\frac{1}{2}} = 0

  1. Setting dydx=0\frac{dy}{dx} = 0 leads to:
12x+1=0\frac{1}{\sqrt{2x+1}} = 0

×(2x+1)\times (\sqrt{2x+1})\\ \leftarrow Intuitively, we only have control of the value of the denominator, and setting this to 0 would give an undefined answer, so no solutions.


  1. This implies:
1=0(a contradiction)1 = 0 \quad \text{(a contradiction)}
  1. No solutions, so no stationary points.\therefore \text{No solutions, so no stationary points.}

infoNote

e.g. Find dydx\frac{dy}{dx} when y=x2+ex2+ln(2x3)y = x^2 + e^{x^2} + \ln(2x-3).

  1. Split into parts:
  • (A) ddx(x2)=2x(No chain rule needed)\text{(A) } \frac{d}{dx}(x^2) = 2x \quad \text{(No chain rule needed)}
  • (B) ddx(e(x2))=e(x2)×2x=2xex2(Chain rule is needed)\text{(B) } \frac{d}{dx}(e^{(x^2)}) = e^{(x^2)} \times 2x = 2xe^{x^2} \quad \text{(Chain rule is needed)}
  • (C) ddx(ln(2x3))=1(2x3)×2=22x3(Chain rule is needed)\text{(C) } \frac{d}{dx}(\ln(2x-3)) = \frac{1}{(2x-3)} \times 2 = \frac{2}{2x-3} \quad \text{(Chain rule is needed)}

  1. Combining all parts:
dydx=2x+2xex2+22x3\frac{dy}{dx} = 2x + 2xe^{x^2} + \frac{2}{2x-3}

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Chain Rule

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

70 flashcards

Flashcards on Chain Rule

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

7 quizzes

Quizzes on Chain Rule

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

2 questions

Exam questions on Chain Rule

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Chain Rule

Create custom exams across topics for better practice!

Try Maths Pure exam builder

18 papers

Past Papers on Chain Rule

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Chain Rule you should explore

Discover More Revision Notes Related to Chain Rule to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Further Differentiation

First Principles Differentiation - Trigonometry

user avatar
user avatar
user avatar
user avatar
user avatar

313+ studying

188KViews

96%

114 rated

Further Differentiation

Differentiating Other Functions (Trig, ln & e etc)

user avatar
user avatar
user avatar
user avatar
user avatar

262+ studying

180KViews

96%

114 rated

Further Differentiation

Product Rule

user avatar
user avatar
user avatar
user avatar
user avatar

400+ studying

188KViews

96%

114 rated

Further Differentiation

Quotient Rule

user avatar
user avatar
user avatar
user avatar
user avatar

370+ studying

200KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered