Photo AI

Last Updated Sep 27, 2025

Matrix Dimensions Simplified Revision Notes

Revision notes with simplified explanations to understand Matrix Dimensions quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

242+ students studying

2.1.2 Matrix Dimensions

The size or dimension of a matrix is defined by the number of rows and columns it contains. If a matrix has mm rows and nn columns, it is referred to as an m×nm × n matrix.

lightbulbExample

Example: The matrix

A=(123456)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}

has 33 rows and 22 columns, so it is a 3×23 × 2 matrix.

Matrices in 3-D

The 3D identity matrix is:

(100010001)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Any 3D linear transformation can be represented by a matrix in which the three columns are the images of the points (100),(010)\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, and (001)\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, respectively.


infoNote

For example, if under a linear transformation the point

(100)(321),(010)(372),and(001)(297), \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \longmapsto \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \longmapsto \begin{pmatrix} 3 \\ 7 \\ -2 \end{pmatrix}, \text{and} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \longmapsto \begin{pmatrix} 2 \\ 9 \\ 7 \end{pmatrix},

then the matrix representing this transformation is:

M=(332279127)M = \begin{pmatrix} 3 & 3 & 2 \\ 2 & 7 & 9 \\ 1 & -2 & 7 \end{pmatrix}
infoNote

The determinant of a 3D matrix representing a linear transformation is the scale factor of the change in volume of the original shape.

lightbulbExample

Example: Find the volume of the image of a cube of volume 1010 after being transformed by the matrix:

(236172225)\begin{pmatrix} 2 & 3 & 6 \\ 1 & 7 & 2 \\ 2 & 2 & 5 \end{pmatrix}

Using the calculator to do the determinant calculation for volume in 3D:

OriginalVolume×DeterminantOriginal Volume × Determinant = 10×15=15010 \times -15 = -150

\therefore The volume of the new shape is 150150, and the orientation has changed (since the determinant is negative).

3D Reflection Matrices

When reflecting in 3D, we reflect in a plane rather than a line:

  • x=0x = 0 is also called the y y-zz plane
  • y=0y = 0 is also called the xx-zz plane
  • z=0z = 0 is also called the xx-yy plane A diagram illustrating the planes is shown below:
image
  • Red: x=0 x = 0 or yy-zz plane
  • Yellow: y=0y = 0 or xx-zz plane
  • Blue: z=0z = 0 or xx-yy plane

Reflection Matrices

Reflection matrices transform vectors by flipping their coordinates relative to a given plane. The unaffected coordinates remain the same, while the reflected coordinate changes sign.

Reflection in the z=0z = 0 plane

Here, only the zcoordinatez-coordinates change, while the xx and yy coordinates remain unchanged.

infoNote

For example:

(001)is reflected to(001)\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \text{is reflected to} \quad \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}

The reflection matrix Refz\text{Ref}_z for this transformation is:

Refz=(100010001)\text{Ref}_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}

Reflection Matrices for Other Planes

Reflection in the x=0x = 0 plane:

Here, only the xcoordinatex-coordinate changes sign.

Refx=(100010001)\text{Ref}_x = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Reflection in the y=0y = 0 plane:

Only the ycoordinatey-coordinate changes sign.

Refy=(100010001)\text{Ref}_y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
lightbulbExample

Example: Reflect the vector

v=(325)\mathbf{v} = \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix}

in the z=0z = 0 plane.


Step 1**:** Use the reflection matrix Refz\text{Ref}_z:

Refz=(100010001)\text{Ref}_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}

Step 2**:** Multiply the matrix by the vector v\mathbf{v}:

Refz(325)=(100010001)(325)\text{Ref}_z \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix}

Step 3**:** Perform the matrix-vector multiplication:

=((1×3)+(0×2)+(0×5)(0×3)+(1×2)+(0×5)(0×3)+(0×2)+(1×5))=(325)= \begin{pmatrix} (1 \times 3) + (0 \times -2) + (0 \times 5) \\ (0 \times 3) + (1 \times -2) + (0 \times 5) \\ (0 \times 3) + (0 \times -2) + (-1 \times 5) \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -5 \end{pmatrix}

The reflected vector is

(325)\begin{pmatrix} 3 \\ -2 \\ -5 \end{pmatrix}

Rotation Matrices

Rotation matrices describe transformations where a vector is rotated about a specific axis by an angle θ\theta.

Rotation About the xaxisx-axis

Rx=(1000cosθsinθ0sinθcosθ)R_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}

Rotation About the yaxisy-axis

Ry=(cosθ0sinθ010sinθ0cosθ)R_y = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}

Rotation About the zaxisz-axis

Rz=(cosθsinθ0sinθcosθ0001)R_z = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}
lightbulbExample

Example: Rotate the vector

v=(100)\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}

by θ=90\theta = 90^\circ about the zaxisz-axis.


Step 1: Use the rotation matrix RzR_z for zaxisz-axis rotation. For θ=90\theta = 90^\circ:

cos90=0,sin90=1\cos 90^\circ = 0, \quad \sin 90^\circ = 1Rz=(010100001)R_z = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Step 2: Multiply RzR_z by the vector v\mathbf{v}:

Rz(100)=(010100001)(100)R_z \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}

Step 3: Perform the matrix-vector multiplication:

=((0×1)+(1×0)+(0×0)(1×1)+(0×0)+(0×0)(0×1)+(0×0)+(1×0))=(010)= \begin{pmatrix} (0 \times 1) + (-1 \times 0) + (0 \times 0) \\ (1 \times 1) + (0 \times 0) + (0 \times 0) \\ (0 \times 1) + (0 \times 0) + (1 \times 0) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}

The rotated vector is

(010)\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}

which shows a 90°90° counterclockwise rotation about the zaxis.z-axis.

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Matrix Dimensions

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

50 flashcards

Flashcards on Matrix Dimensions

Revise key concepts with interactive flashcards.

Try Further Maths Core Pure Flashcards

5 quizzes

Quizzes on Matrix Dimensions

Test your knowledge with fun and engaging quizzes.

Try Further Maths Core Pure Quizzes

29 questions

Exam questions on Matrix Dimensions

Boost your confidence with real exam questions.

Try Further Maths Core Pure Questions

27 exams created

Exam Builder on Matrix Dimensions

Create custom exams across topics for better practice!

Try Further Maths Core Pure exam builder

50 papers

Past Papers on Matrix Dimensions

Practice past papers to reinforce exam experience.

Try Further Maths Core Pure Past Papers

Other Revision Notes related to Matrix Dimensions you should explore

Discover More Revision Notes Related to Matrix Dimensions to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Properties of Matrices

Introduction to Matrices

user avatar
user avatar
user avatar
user avatar
user avatar

281+ studying

185KViews

96%

114 rated

Properties of Matrices

Scalar Multiple

user avatar
user avatar
user avatar
user avatar
user avatar

234+ studying

183KViews

96%

114 rated

Properties of Matrices

Determinants of Matrices

user avatar
user avatar
user avatar
user avatar
user avatar

323+ studying

198KViews

96%

114 rated

Properties of Matrices

Inverses of Matrices

user avatar
user avatar
user avatar
user avatar
user avatar

250+ studying

184KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered