Photo AI

Last Updated Sep 27, 2025

Geometric Transformations with Matrices Simplified Revision Notes

Revision notes with simplified explanations to understand Geometric Transformations with Matrices quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

476+ students studying

2.2.2 Geometric Transformations with Matrices

Introduction to 3D Transformations

In 3D geometry, transformations using matrices extend the 2D concepts to three dimensions. These transformations include reflections across planes and rotations about coordinate axes. This topic assumes knowledge of 3D vectors, providing a foundation for visualizing and calculating transformations in space.

Key 3D Transformations and Their Matrices

Reflections

A reflection in 3D mirrors points across a specified plane. The transformation matrices for reflections about the three coordinate planes are:

Reflection in the plane x=0x = 0 (yzplaneyz-plane):

Matrix=(100010001)\text{Matrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Reflection in the plane y=0y = 0 (xzplanexz-plane):

Matrix=(100010001)\text{Matrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Reflection in the plane z=0z = 0 (xyplanexy-plane):

Matrix=(100010001)\text{Matrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}

Rotations

Rotations in 3D are performed about one of the coordinate axes:

Rotation by angle θ\theta about the xaxisx-axis:

Matrix=(1000cosθsinθ0sinθcosθ)\text{Matrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}

Rotation by angle θ\theta about the yaxisy-axis:

Matrix=(cosθ0sinθ010sinθ0cosθ)\text{Matrix} = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}

Rotation by angle θ\theta about the zaxisz-axis:

Matrix=(cosθsinθ0sinθcosθ0001)\text{Matrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}

These matrices rotate vectors counterclockwise when looking along the positive axis direction.

Combined Transformations

When combining multiple transformations, the order of multiplication is critical. The resulting matrix is the product of the matrices of the individual transformations in reverse order:

If transformation AA is applied first, followed by BB, the combined transformation matrix is B×AB \times A

lightbulbExample

Example: To apply a rotation about the zaxisz-axis followed by a reflection in the plane y=0y = 0:


Rotation matrix Rz(θ)R_z(\theta):

Rz(θ)=(cosθsinθ0sinθcosθ0001)R_z(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}

Reflection matrix RefyRef_y:

Refy=(100010001)Ref_y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Combined matrix Refy×Rz(θ)Ref_y \times R_z(\theta)

=(100010001)= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}=(cosθsinθ0sinθcosθ0001)= \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}=(cosθsinθ0sinθcosθ0001)= \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ -\sin \theta & -\cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}
lightbulbExample

Example: Determine the matrix for a reflection in the x=0x = 0 plane followed by a rotation of 9090^\circ about the zaxisz-axis.


Reflection matrix:

(100010001)\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Rotation matrix (90°90° about zaxisz-axis):

(010100001)\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Combined transformation:

=(010100001)= \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}=(100010001)= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}=(010100001)= \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Note Summary

infoNote

Common Mistakes:

  1. Incorrect Order of Matrix Multiplication: The order in which matrices are multiplied matters. Applying transformations in the wrong sequence gives incorrect results.
  2. Misidentifying Axes for Rotation: Confusing rotations about the x,yx, y, and zz axes.
  3. Incorrect Application of Angles: Using clockwise rotations instead of anticlockwise, or vice versa.
  4. Incorrect Reflection Plane: Mistaking x=0x = 0 for y=0y = 0, or similar errors.
  5. Determinant Misuse: Misinterpreting the determinant as a scale factor in transformations where it doesn't apply.
infoNote

Key Formulas:

Reflection Matrices:

x=0x = 0

(100010001)\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

y=0y = 0

(100010001)\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

z=0z = 0

(100010001)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}

Rotation Matrices:

About xx:

(1000cosθsinθ0sinθcosθ)\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}

About yy:

(cosθ0sinθ010sinθ0cosθ)\begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}

About zz:

(cosθsinθ0sinθcosθ0001)\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}

Combined Transformations:

Resulting matrix=B×A\text{Resulting matrix} = B \times A

for applying transformation AA followed by BB.

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Geometric Transformations with Matrices

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

30 flashcards

Flashcards on Geometric Transformations with Matrices

Revise key concepts with interactive flashcards.

Try Further Maths Core Pure Flashcards

3 quizzes

Quizzes on Geometric Transformations with Matrices

Test your knowledge with fun and engaging quizzes.

Try Further Maths Core Pure Quizzes

29 questions

Exam questions on Geometric Transformations with Matrices

Boost your confidence with real exam questions.

Try Further Maths Core Pure Questions

27 exams created

Exam Builder on Geometric Transformations with Matrices

Create custom exams across topics for better practice!

Try Further Maths Core Pure exam builder

50 papers

Past Papers on Geometric Transformations with Matrices

Practice past papers to reinforce exam experience.

Try Further Maths Core Pure Past Papers

Other Revision Notes related to Geometric Transformations with Matrices you should explore

Discover More Revision Notes Related to Geometric Transformations with Matrices to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Transformations using Matrices

Transformations using a Matrix

user avatar
user avatar
user avatar
user avatar
user avatar

393+ studying

194KViews

96%

114 rated

Transformations using Matrices

Invariant Points & Lines

user avatar
user avatar
user avatar
user avatar
user avatar

284+ studying

185KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered