Photo AI

Last Updated Sep 27, 2025

Differentiating & Integrating Hyperbolic Functions Simplified Revision Notes

Revision notes with simplified explanations to understand Differentiating & Integrating Hyperbolic Functions quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

481+ students studying

4.1.3 Differentiating & Integrating Hyperbolic Functions

Differentiating Inverse Hyperbolic and Trig Functions

Introduction to Inverse Hyperbolic Functions

Inverse hyperbolic functions, denoted as sinh1x,cosh1x\sinh^{-1} x, \cosh^{-1} x, and tanh1x\tanh^{-1} x, are the inverses of the hyperbolic sine, cosine, and tangent functions. These functions can be expressed in terms of natural logarithms, which are useful for simplifying and solving problems involving hyperbolic functions.

The logarithmic forms of inverse hyperbolic functions are derived using the definitions of hyperbolic functions and the properties of exponentials. These forms allow us to compute values for inverse hyperbolic functions without relying on numerical estimation of hyperbolic equations.

Logarithmic Forms of Inverse Hyperbolic Functions

Inverse Hyperbolic Sine (sinh1x\sinh^{-1} x)****:

sinh1x=ln(x+x2+1),xR\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}), \quad x \in \mathbb{R}

Inverse Hyperbolic Cosine (cosh1x\cosh^{-1} x)****:

cosh1x=ln(x+x21),x1\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}), \quad x \geq 1

Inverse Hyperbolic Tangent (tanh1x\tanh^{-1} x)****:

tanh1x=12ln(1+x1x),x<1\tanh^{-1} x = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right), \quad |x| < 1

Worked Examples

lightbulbExample

Example Differentiate arccos(x)\arccos(x)

  1. Let y=arccos(x)y = \arccos(x) and rearrange it to x=f(y)x = f(y)
y=arccos(x)    x=cos(y)y = \arccos(x) \implies x = \cos(y)
  1. Find dxdy\frac{dx}{dy}
dxdy=sin(y)\frac{dx}{dy} = -\sin(y)
  1. Find the reciprocal to get dydx\frac{dy}{dx}, then rearrange in terms of xx
dydx=1sin(y)\frac{dy}{dx} = \frac{-1}{\sin(y)}

Given x=cos(y)x = \cos(y)

x2=cos2(y)    1sin2(y)x^2 = \cos^2(y) \implies 1 - \sin^2(y)sin2(y)=1x2\sin^2(y) = 1 - x^2sin(y)=±1x2\sin(y) = \pm\sqrt{1 - x^2}dydx=1±1x2\frac{dy}{dx} = \frac{-1}{\pm\sqrt{1 - x^2}}

(Redundant ±\pm gives 1-1 in the denominator)

dydx=±11x2\therefore \frac{dy}{dx} = \pm\frac{1}{\sqrt{1 - x^2}}

However, looking at the graph of y=arccos(x)y = \arccos(x):

At points (0,π/20, \pi/2), (1,01,0), and (1,π-1, \pi), the graph shows that the gradient is always negative.

dydx=11x2\therefore \frac{dy}{dx} = -\frac{1}{\sqrt{1 - x^2}}
lightbulbExample

Example: Differentiate y=arccos(ln(3x+2))y = \arccos(\ln(3x + 2))

[Hint: Use the chain rule and the above result.]

dydx=11(ln(3x+2))2×13x+2×3\frac{dy}{dx} = \frac{-1}{\sqrt{1 - (\ln(3x + 2))^2}} \times \frac{1}{3x + 2} \times 3=3(3x+2)1[ln(3x+2)]2= \frac{-3}{(3x + 2)\sqrt{1 - [\ln(3x + 2)]^2}}
lightbulbExample

Example: Differentiate y=arccos(ex+7x)y = \arccos(e^x + 7x)

dydx=11(ex+7x)2×(ex+7)\frac{dy}{dx} = \frac{-1}{\sqrt{1 - (e^x + 7x)^2}} \times (e^x + 7)=(ex+7)1(ex+7x)2= \frac{-(e^x + 7)}{\sqrt{1 - (e^x + 7x)^2}}
lightbulbExample

Example: Find in full, showing detailed reasoning, the first derivative of arcsin(x)\arcsin(x)

y=arcsin(x)    x=sin(y)y = \arcsin(x) \implies x = \sin(y)dxdy=cos(y)    dydx=1cos(y)\frac{dx}{dy} = \cos(y) \implies \frac{dy}{dx} = \frac{1}{\cos(y)}

Since x=sin(y)x = \sin(y),

x2=sin2(y)=1cos2(y)x^2 = \sin^2(y) = 1 - \cos^2(y)    cos2(y)=1x2    cos(y)=±1x2\implies \cos^2(y) = 1 - x^2 \implies \cos(y) = \pm\sqrt{1 - x^2}

Thus:

dydx=1±1x2\frac{dy}{dx} = \frac{1}{\pm\sqrt{1 - x^2}}

Note that the gradient is always positive, so:

dydx=11x2\therefore \quad \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}
lightbulbExample

Example: Differentiate y=arsinh(x)y = \text{arsinh}(x)

sinh(y)=x    dxdy=cosh(y)    dydx=1cosh(y)\sinh(y) = x \implies \frac{dx}{dy} = \cosh(y) \implies \frac{dy}{dx} = \frac{1}{\cosh(y)}

Since cosh2(y)sinh2(y)=1\cosh^2(y) - \sinh^2(y) = 1

cosh2(y)=1+sinh2(y)    cosh(y)=±1+sinh2(y)\cosh^2(y) = 1 + \sinh^2(y) \implies \cosh(y) = \pm \sqrt{1 + \sinh^2(y)}dydx=±11+sinh2(y)2=dydx=±11+x2\therefore \frac{dy}{dx} = \pm\frac{1}{\sqrt{1 + sinh^2(y)^2}} = \frac{dy}{dx} = \pm\frac{1}{\sqrt{1 + x^2}}

Since gradient is always Positive

dydx=11+x2\therefore \quad \frac{dy}{dx} = \frac{1}{\sqrt{1 + x^2}}
lightbulbExample

Example: Use the above result to find ddx(arsinh(tanx))\frac{d}{dx} (\text{arsinh}(\tan{x}))

We know ddx(arsinh(x))=11+x2\frac{d}{dx} (\text{arsinh}(x)) = \frac{1}{\sqrt{1 + x^2}}.

Let y=arsinh(tanx)y = \text{arsinh}(\tan{x}), then

dydx=11+tan2x×sec2x\frac{dy}{dx} = \frac{1}{\sqrt{1 + \tan^2{x}}} \times \sec^2{x}

Since 1+tan2x=sec2x1 + \tan^2{x} = \sec^2{x}, we get:

dydx=sec2xsec2x=secx\frac{dy}{dx} = \frac{\sec^2{x}}{\sqrt{\sec^2{x}}} = \sec{x}

Past Paper Worked Questions

infoNote

Q1. (June 2006, Q2) (i) Given that y=tan1(x)y = \tan^{-1}(x), prove that dydx=11+x2\frac{dy}{dx} = \frac{1}{1 + x^2}.

(ii) Verify that y=tan1(x)y = \tan^{-1}(x) satisfies the equation

(1+x2)d2ydx2+2xdydx=0. (1 + x^2) \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = 0.

Solution:

(i) Let y=arctan(x)y = \arctan(x).

    x=tan(y)    dxdy=sec2(y)\implies x = \tan(y) \implies \frac{dx}{dy} = \sec^2(y)

Thus,

dydx=1sec2(y)=1tan2(y)+1=11+x2\frac{dy}{dx} = \frac{1}{\sec^2(y)} = \frac{1}{\tan^2(y) + 1} = \frac{1}{1 + x^2}

(ii) dydx=(1+x2)1\frac{dy}{dx} = (1 + x^2)^{-1}

Differentiate again:

d2ydx2=(1+x2)2=2x(1+x2)2\frac{d^2y}{dx^2} =-(1 + x^2)^{-2} = -\frac{2x}{(1 + x^2)^2}

Substitute dydx and d2ydx2\frac{dy}{dx}\ and \ \frac{d^2y}{dx^2} into the LHS of the expression:

LHS=(1+x2)×(2x(1+x2)2)+2x(11+x2)\text{LHS} = (1 + x^2) \times \left( -\frac{2x}{(1 + x^2)^2} \right) + 2x \left( \frac{1}{1 + x^2} \right)

Simplify:

=2x(1+x2)(1+x2)2+2x1+x2= \frac{-2x\color {red}\cancel{(1 + x^2)}}{(1 + x^2) \color {red} \cancel{^2}} + \frac{2x}{1 + x^2}=2x1+x2+2x1+x2=0= \frac{-2x}{1 + x^2} + \frac{2x}{1 + x^2} = 0

Thus, the equation is verified.

infoNote

Q4. (Jan 2010, Q9) (i) Given that y=tanh1(x)y = \tanh^{-1}(x), for 1<x<1-1 < x < 1, prove that y=12ln(1+x1x)y = \frac{1}{2} \ln \left( \frac{1 + x}{1 - x} \right) .

Let x=tanh(y)=sinh(y)cosh(y)x = \tanh(y) = \frac{\sinh(y)}{\cosh(y)}.

x=tanhy=sinhycoshy=12(eyey)12(ey+ey)=(eyey)(ey+ey)x = \tanh y = \frac{\sinh y}{\cosh y} = \frac{\frac{1}{2}(e^y - e^{-y})}{\frac{1}{2}(e^y + e^{-y})} = \frac{(e^y - e^{-y})}{(e^y + e^{-y})}x(ey+ey)=eyey\Rightarrow x(e^y + e^{-y}) = e^y - e^{-y}

Multiply by eye^y

x(e2y+1)=e2y1xe2y+x=e2y1\Rightarrow x(e^{2y} + 1) = e^{2y} - 1 \Rightarrow xe^{2y} + x = e^{2y} - 1xe2ye2y=1x\Rightarrow xe^{2y} - e^{2y} = -1 - xe2y(x1)=1xe2y=1xx1×11=1+x1x\Rightarrow e^{2y}(x - 1) = -1 - x \Rightarrow e^{2y} = \frac{-1 - x}{x - 1} \times \frac {-1}{-1} = \frac{1 + x}{1 - x}2y=ln(1+x1x)y=12ln(1+x1x)as required\Rightarrow 2y = \ln \left( \frac{1+x}{1-x} \right) \Rightarrow y = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right) \quad \text{as required}

(ii) Given that f(x)=acosh(x)bsinh(x)f(x) = a \cosh(x) - b \sinh(x), where a and b are positive constants:

(a) Given that bab \geq a, show that the curve with equation y=f(x)y = f(x) has no stationary points.

f1(x)=asinh(x)bcosh(x)=0    asinh(x)=bcosh(x)f^1(x) = a \sinh(x) - b \cosh(x)=0 \implies a\sinh (x) = b \cosh (x)    sinh(x)cosh(x)=ba    tanh(x)=ba \implies \frac {\sinh(x)}{\cosh(x)} = \frac{b}{a} \implies \tanh (x) = \frac{b}{a}    x=archtanh(ba)\implies x = archtanh \bigg (\frac{b}{a} \bigg)

Since ba1\frac{b}{a} \geq 1 and archtanh(x)archtanh(x) has domain 1<x<1-1 < x < 1

\therefore no solutions and no stationary points

(b) In the case where a>1a > 1 and b=1b = 1, show that f(x)f(x) has a minimum value of a21\sqrt{a^2 - 1}.

Let f(x)=acosh(x)sinh(x)f(x) = a \cosh(x) - \sinh(x).

Differentiate:

f(x)=asinh(x)cosh(x)=0asinh(x)=cosh(x)    tanh(x)=1af'(x) = a \sinh(x) - \cosh(x) = 0\\ a \sinh (x) = \cosh (x) \implies \tanh (x) = \frac {1}{a}    sinh(x)=1acosh(x)    tanh(x)=1a\implies \sinh(x) = \frac{1}{a} \cosh(x) \implies \tanh(x) = \frac{1}{a}x=artanh(1a)=12ln(1+1a11a)=12ln(a+1a1)=ln(a+1a1)x = ar\tanh \left( \frac{1}{a} \right) = \frac{1}{2} \ln \left( \frac{1 + \frac{1}{a}}{1 - \frac{1}{a}} \right) = \frac{1}{2} \ln \left( \frac{a + 1}{a - 1} \right) = \ln \left(\sqrt \frac{a + 1}{a - 1} \right)f(x)=acosh(x)sinh(x)=a2(eln(a+1a1)+eln(a+1a1))12(eln(a+1a1)eln(a+1a1))f(x) =a \cosh (x)-\sinh (x)= \frac{a}{2} \left( e^{\ln \left( \frac{a + 1}{a - 1} \right)} + e^{-\ln \left( \frac{a + 1}{a - 1} \right)} \right) - \frac{1}{2} \left( e^{\ln \left( \frac{a + 1}{a - 1} \right)} - e^{-\ln \left( \frac{a + 1}{a - 1} \right)} \right)

Simplifying:

=a2(a+1a1+a1a+1)12(a+1a1a1a+1)= \frac{a}{2} \left( \sqrt \frac{a + 1}{a - 1} + \sqrt\frac{a - 1}{a + 1} \right) - \frac{1}{2} \left( \sqrt\frac{a + 1}{a - 1} - \sqrt\frac{a - 1}{a + 1} \right)

Finally, this simplifies to a21\sqrt{a^2 - 1}.

=a2((a+1)2+(a1)2(a1)(a1))12((a+1)2(a1)2(a+1)(a1))= \frac{a}{2} \left( \frac{ \sqrt{(a+1)^2} + \sqrt{(a-1)^2}}{\sqrt{(a-1)(a-1)}} \right) - \frac{1}{2} \left( \frac{ \sqrt{(a+1)^2} - \sqrt{(a-1)^2}}{\sqrt{(a+1)(a-1)}} \right)=a2(a+1+a1(a+1)(a1))12(a+1a+1(a+1)(a1))= \frac{a}{2} \left( \frac{a\cancel{+1} + a\cancel{-1}}{\sqrt{(a+1)(a-1)}} \right) - \frac{1}{2} \left( \frac{a+1 - a + 1}{\sqrt{(a+1)(a-1)}} \right)=a2(2aa21)12(2a21)= \frac{a}{\cancel2} \left( \frac{\cancel2a}{\sqrt{a^2 - 1}} \right) - \frac{1}{\cancel2} \left( \frac{\cancel2}{\sqrt{a^2 - 1}} \right)=a2a211a21=a21a21=a21as required= \frac{a^2}{\sqrt{a^2 - 1}} - \frac{1}{\sqrt{a^2 - 1}} = \frac{a^2 - 1}{\sqrt{a^2 - 1}} = \sqrt{a^2 - 1} \quad \text{as required}

Note Summary

infoNote

Common Mistakes:

  1. Confusing the formulas for sinh1x\sinh^{-1} x and cosh1x\cosh^{-1} x: For sinh1x\sinh^{-1} x, the square root is x2+1\sqrt{x^2 + 1}; for cosh1x\cosh^{-1} x, it is x21\sqrt{x^2 - 1}

  2. Using incorrect domains: cosh1x\cosh^{-1} x is only valid for x1x \geq 1, and tanh1x\tanh^{-1} x is only valid for x<1|x| < 1

  3. Sign errors when solving quadratic equations: Ensure you select the correct branch of the logarithmic solution based on the context.

  4. Overlooking restrictions on ln\ln: Logarithmic functions require positive arguments, so ensure x+x2+1>0x + \sqrt{x^2 + 1} > 0

infoNote

Key Formulas:

  1. sinh1x=ln(x+x2+1)xR\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}) x \in \mathbb{R}
  2. cosh1x=ln(x+x21)x1\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}) x \geq 1
  3. tanh1x=12ln(1+x1x)x<1\tanh^{-1} x = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right) |x| < 1
  4. Domains:
  • sinh1x:xR\sinh^{-1} x: x \in \mathbb{R}
  • cosh1x:x1\cosh^{-1} x: x \geq 1
  • tanh1x:x<1\tanh^{-1} x: |x| < 1
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Differentiating & Integrating Hyperbolic Functions

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

30 flashcards

Flashcards on Differentiating & Integrating Hyperbolic Functions

Revise key concepts with interactive flashcards.

Try Further Maths Core Pure Flashcards

3 quizzes

Quizzes on Differentiating & Integrating Hyperbolic Functions

Test your knowledge with fun and engaging quizzes.

Try Further Maths Core Pure Quizzes

29 questions

Exam questions on Differentiating & Integrating Hyperbolic Functions

Boost your confidence with real exam questions.

Try Further Maths Core Pure Questions

27 exams created

Exam Builder on Differentiating & Integrating Hyperbolic Functions

Create custom exams across topics for better practice!

Try Further Maths Core Pure exam builder

50 papers

Past Papers on Differentiating & Integrating Hyperbolic Functions

Practice past papers to reinforce exam experience.

Try Further Maths Core Pure Past Papers

Other Revision Notes related to Differentiating & Integrating Hyperbolic Functions you should explore

Discover More Revision Notes Related to Differentiating & Integrating Hyperbolic Functions to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Hyperbolic Functions

Hyperbolic Functions & Graphs

user avatar
user avatar
user avatar
user avatar
user avatar

330+ studying

196KViews

96%

114 rated

Hyperbolic Functions

Logarithmic Forms of Inverse Hyperbolic Functions

user avatar
user avatar
user avatar
user avatar
user avatar

349+ studying

188KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered