Photo AI

Last Updated Sep 27, 2025

Calculus Involving Inverse Trig Simplified Revision Notes

Revision notes with simplified explanations to understand Calculus Involving Inverse Trig quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

386+ students studying

5.2.4 Calculus Involving Inverse Trig

Differentiating Inverse Trigonometric Functions

Inverse trigonometric functions, such as arcsinx\arcsin x, arccosx\arccos x, and arctanx\arctan x, are commonly used in calculus. Differentiating these functions requires understanding their derivatives, which can be derived using implicit differentiation or directly memorized as formulas.


Key Differentiation Rules

Derivative of arcsin\arcsin xx:

ddx(arcsinx)=11x2,x1\frac{d}{dx} (\arcsin x) = \frac{1}{\sqrt{1-x^2}}, \quad |x| \leq 1

Derivative of arccos\arccos xx:

ddx(arccosx)=11x2,x1\frac{d}{dx} (\arccos x) = -\frac{1}{\sqrt{1-x^2}}, \quad |x| \leq 1

Derivative of arctan\arctan xx:

ddx(arctanx)=11+x2,xR\frac{d}{dx} (\arctan x) = \frac{1}{1+x^2}, \quad x \in \mathbb{R}

Derivative of arccot x\text{arccot}\ x:

ddx(arccot x)=11+x2,xR\frac{d}{dx} (\text{arccot}\ x) = -\frac{1}{1+x^2}, \quad x \in \mathbb{R}

Derivative of arcsec x\text{arcsec}\ x:

ddx(arcsec x)=1xx21,x>1\frac{d}{dx} (\text{arcsec}\ x) = \frac{1}{|x| \sqrt{x^2-1}}, \quad |x| > 1

Derivative of arccsc x\text{arccsc}\ x:

ddx(arccsc x)=1xx21,x>1\frac{d}{dx} (\text{arccsc}\ x) = -\frac{1}{|x| \sqrt{x^2-1}}, \quad |x| > 1

Worked Examples

lightbulbExample

Example 1: Differentiate f(x)=arcsinx+x1x2f(x) = \arcsin x + x\sqrt{1-x^2}


Step 1: Differentiate term by term:

First term:

ddx(arcsinx)=11x2\frac{d}{dx} (\arcsin x) = \frac{1}{\sqrt{1-x^2}}

Second term:

Use the product rule for x1x2x\sqrt{1-x^2}

Let u=xu=x and v=1x2v = \sqrt{1-x^2}:

ddx(x1x2)=dudx×v+u×dvdx\frac{d}{dx} (x\sqrt{1-x^2}) = \frac{du}{dx} \times v + u \times \frac{dv}{dx}dudx=1\frac{du}{dx} = 1v=(1x2)1/2    dvdx=x1x2v = (1-x^2)^{1/2} \implies \frac{dv}{dx} = \frac{-x}{\sqrt{1-x^2}}

Substitute:

ddx(x1x2)=1×1x2+x×x1x2\frac{d}{dx} (x\sqrt{1-x^2}) = 1 \times \sqrt{1-x^2} + x \times \frac{-x}{\sqrt{1-x^2}} =1x2x21x2= \sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}

Simplify:

ddx(x1x2)=1x21x2=1x2\frac{d}{dx} (x\sqrt{1-x^2}) = \frac{1-x^2}{\sqrt{1-x^2}} = \sqrt{1-x^2}

Step 2: Combine results:

ddx(arcsinx+x1x2)=11x2+1x2\frac{d}{dx} \left( \arcsin x + x\sqrt{1-x^2} \right) = \frac{1}{\sqrt{1-x^2}} + \sqrt{1-x^2}
lightbulbExample

Example 2**:** Differentiate f(x)=12arctan(x2)f(x) = \frac{1}{2} \arctan(x^2)


Step 1: Apply the chain rule:

Let u=x2u = x^2

Then f(x)=12arctanu f(x) = \frac{1}{2} \arctan u and dudx=2x\frac{du}{dx} = 2x


Step 2: Differentiate arctanu\arctan u:

ddx(arctanu)=11+u2×dudx\frac{d}{dx} (\arctan u) = \frac{1}{1+u^2} \times \frac{du}{dx}

Step 3: Substitute back:

ddx(12arctan(x2))=12×11+(x2)2×2x\frac{d}{dx} \left( \frac{1}{2} \arctan(x^2) \right) = \frac{1}{2} \times \frac{1}{1+(x^2)^2} \times 2x =x1+x4= \frac{x}{1+x^4}

Result:

ddx(12arctan(x2))=x1+x4\frac{d}{dx} \left( \frac{1}{2} \arctan(x^2) \right) = \frac{x}{1+x^4}
lightbulbExample

Example 3: Differentiate f(x)=xarccosxf(x) = x \arccos x


Step 1: Use the product rule:

Let u=xu = x and v=arccosxv = \arccos x

ddx(xarccosx)=dudx×v+u×dvdx\frac{d}{dx} (x \arccos x) = \frac{du}{dx} \times v + u \times \frac{dv}{dx}

Step 2: Differentiate uu and vv:

dudx=1\frac{du}{dx} = 1dvdx=11x2\frac{dv}{dx} = -\frac{1}{\sqrt{1-x^2}}

Step 3: Substitute back:

ddx(xarccosx)=1×arccosx+x×(11x2)\frac{d}{dx} (x \arccos x) = 1 \times \arccos x + x \times \left(-\frac{1}{\sqrt{1-x^2}}\right)

Step 4: Simplify:

ddx(xarccosx)=arccosxx1x2\frac{d}{dx} (x \arccos x) = \arccos x - \frac{x}{\sqrt{1-x^2}}

Note Summary

infoNote

Common Mistakes:

  1. Mixing up derivatives of arcsinx\arcsin x and arccosx\arccos x: Remember arcsinx\arcsin x has a positive derivative, whereas arccosx\arccos x has a negative one.

  2. Forgetting the chain rule: When differentiating compositions like arctan(x2)\arctan(x^2), always apply the chain rule.

  3. Mismanaging square roots: Be careful with expressions like 1x2\sqrt{1-x^2}, especially when simplifying.

  1. Ignoring domain restrictions: Inverse trigonometric functions have specific domains,

📑e.g., x1|x| \leq 1 for arcsinx\arcsin x and arccosx\arccos x.

  1. Omitting the product rule: Don't forget to apply the product rule for terms like xarccosxx \arccos x
infoNote

Key Formulas:

  1. Basic Derivatives:
ddx(arcsinx)=11x2,ddx(arccosx)=11x2\frac{d}{dx} (\arcsin x) = \frac{1}{\sqrt{1-x^2}}, \quad \frac{d}{dx} (\arccos x) = -\frac{1}{\sqrt{1-x^2}}ddx(arctanx)=11+x2,ddx(arccot x)=11+x2\frac{d}{dx} (\arctan x) = \frac{1}{1+x^2}, \quad \frac{d}{dx} (\text{arccot}\ x) = -\frac{1}{1+x^2}ddx(arcsec x)=1xx21,ddx(arccsc x)=1xx21\frac{d}{dx} (\text{arcsec}\ x) = \frac{1}{|x| \sqrt{x^2-1}}, \quad \frac{d}{dx} (\text{arccsc}\ x) = -\frac{1}{|x| \sqrt{x^2-1}}
  1. Product Rule:
ddx(u×v)=dudx×v+u×dvdx\frac{d}{dx} (u \times v) = \frac{du}{dx} \times v + u \times \frac{dv}{dx}
  1. Chain Rule:
ddxf(g(x))=f(g(x))×g(x)\frac{d}{dx} f(g(x)) = f'(g(x)) \times g'(x)
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Calculus Involving Inverse Trig

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

50 flashcards

Flashcards on Calculus Involving Inverse Trig

Revise key concepts with interactive flashcards.

Try Further Maths Core Pure Flashcards

5 quizzes

Quizzes on Calculus Involving Inverse Trig

Test your knowledge with fun and engaging quizzes.

Try Further Maths Core Pure Quizzes

29 questions

Exam questions on Calculus Involving Inverse Trig

Boost your confidence with real exam questions.

Try Further Maths Core Pure Questions

27 exams created

Exam Builder on Calculus Involving Inverse Trig

Create custom exams across topics for better practice!

Try Further Maths Core Pure exam builder

50 papers

Past Papers on Calculus Involving Inverse Trig

Practice past papers to reinforce exam experience.

Try Further Maths Core Pure Past Papers

Other Revision Notes related to Calculus Involving Inverse Trig you should explore

Discover More Revision Notes Related to Calculus Involving Inverse Trig to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Methods in Calculus

Improper Integrals

user avatar
user avatar
user avatar
user avatar
user avatar

266+ studying

196KViews

96%

114 rated

Methods in Calculus

Mean Value of a Function

user avatar
user avatar
user avatar
user avatar
user avatar

470+ studying

182KViews

96%

114 rated

Methods in Calculus

Integrating with Partial Fractions

user avatar
user avatar
user avatar
user avatar
user avatar

326+ studying

186KViews

96%

114 rated

Methods in Calculus

Integration by Substitution

user avatar
user avatar
user avatar
user avatar
user avatar

435+ studying

190KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered