Photo AI

Last Updated Sep 26, 2025

Using Calculus in 2D Simplified Revision Notes

Revision notes with simplified explanations to understand Using Calculus in 2D quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

322+ students studying

2.4.1 Using Calculus in 2D

Vectors in Kinematics with Non-Constant Acceleration

When acceleration is non-constant, we cannot use SUVAT equations. We must use calculus.

Relationships:

dsdt=v(velocity)anddvdt=a(acceleration)\frac{d\mathbf{s}}{dt} = \mathbf{v} \quad \text{(velocity)} \quad \text{and} \quad \frac{d\mathbf{v}}{dt} = \mathbf{a} \quad \text{(acceleration)} s=vdt(displacement)andv=adt\mathbf{s} = \int \mathbf{v} \, dt \quad \text{(displacement)} \quad \text{and} \quad \mathbf{v} = \int \mathbf{a} \, dt

Problem 1:

infoNote

At time t seconds, a particle P has position vector r\mathbf{r} with respect to a fixed origin O, where:

r=(3t4)i+(t34t)j,t0\mathbf{r} = \left(3t - 4\right)\mathbf{i} + \left(t^3 - 4t\right)\mathbf{j}, \quad t \geq 0

Find:

  • (a) The velocity of P when t=3t = 3
  • (b) The acceleration of P when t=3t = 3

Solution:

(a): Velocity of P

Velocity v=drdt\mathbf{v} = \frac{d\mathbf{r}}{dt}:

v=ddt(3t4)i+ddt(t34t)j=(3)i+(3t24)jlet t=3:v=3i+(3(32)4)j=(3i+23j) m s1\mathbf{v} = \frac{d}{dt} \left(3t - 4\right)\mathbf{i} + \frac{d}{dt} \left(t^3 - 4t\right)\mathbf{j} = \left(3\right)\mathbf{i} + \left(3t^2 - 4\right)\mathbf{j} \\ let \ t = 3:\\ \\ \mathbf{v} = 3\mathbf{i} + \left(3(3^2) - 4\right)\mathbf{j} = \left(3\mathbf{i} + 23\mathbf{j}\right) \text{ m s\(^{-1}\)}

(b): Acceleration of P

Acceleration a=dvdt\mathbf{a} = \frac{d\mathbf{v}}{dt}:

a=ddt(3)i+ddt(3t24)j=(0)i+(6t)j\mathbf{a} = \frac{d}{dt} \left(3\right)\mathbf{i} + \frac{d}{dt} \left(3t^2 - 4\right)\mathbf{j} = \left(0\right)\mathbf{i} + \left(6t\right)\mathbf{j}

At t = 3:

a=(0i+18j) m s2\mathbf{a} = \left(0\mathbf{i} + 18\mathbf{j}\right) \text{ m s\(^{-2}\)}

Problem 2:

infoNote

A particle P of mass 3 grams moving in a plane is acted on by a force F\mathbf{F} Newtons. Its velocity at time t seconds is given by:

v=(t2i+(2t3t)j) m s1,t0\mathbf{v} = \left(t^2 \mathbf{i} + (2t - 3t)\mathbf{j}\right) \text{ m s\(^{-1}\)}, \quad t \geq 0

Find the force F \mathbf{F} when t=4t = 4.

Solution:

Velocity v\mathbf{v} is given by:

v=(t2i+(2t3)j)\mathbf{v} = \left(t^2 \mathbf{i} + (2t - 3)\mathbf{j}\right)

To find acceleration a\mathbf{a}:

a=dvdt=ddt(t2i+(2t3)j)=(2t)i+(2)j\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d}{dt} \left(t^2 \mathbf{i} + (2t - 3)\mathbf{j}\right) = \left(2t\right)\mathbf{i} + \left(2\right)\mathbf{j}

At t=4t = 4:

a=(2(4))i+(2)j=(8i+2j) m s2\mathbf{a} = \left(2(4)\right)\mathbf{i} + \left(2\right)\mathbf{j} = \left(8\mathbf{i} + 2\mathbf{j}\right) \text{ m s\(^{-2}\)}

Using F=ma\mathbf{F} = m\mathbf{a} and mass m=m = 3×103kg3 \times 10^{-3} kg:

F=0.003×(8i+2j)=(0.024i+0.006j) N\mathbf{F} = 0.003 \times \left(8\mathbf{i} + 2\mathbf{j}\right) = \left(0.024\mathbf{i} + 0.006\mathbf{j}\right) \text{ N}

Problem 3:

infoNote

A particle P is moving in a plane with velocity vms1\mathbf{v} ms^{-1} at time t seconds where:

v=(3t2+2t)i+(6t4t)j,t0\mathbf{v} = (3t^2 + 2t)\mathbf{i} + (6t - 4t)\mathbf{j}, \quad t \geq 0

When t=2t = 2, PP has a position vector 9jm9\mathbf{j} m with respect to a fixed origin OO.

Find:

a) The distance of PP from OO when t=0t = 0.

b) The acceleration of PP at the instant when it is moving parallel to the vector i\mathbf{i}.


Solution:

Part (a): Distance of PP from OO when t=0t = 0

Given:

  • v=(3t2+2t)i+(3t24t)j\mathbf{v} = \left(3t^2 + 2t\right)\mathbf{i} + \left(3t^2 - 4t\right)\mathbf{j} To find the position vector s,:highlight[integrate]v\mathbf{s}, :highlight[integrate] \mathbf{v} with respect to tt:
s=vdt=(t3+t23+2t22)i+(t332t2)j+C\mathbf{s} = \int \mathbf{v} \, dt = \left(\frac{t^3 + t^2}{3} + \frac{2t^2}{2}\right)\mathbf{i} + \left(\frac{t^3}{3} - 2t^2\right)\mathbf{j} + \mathbf{C}

When t=2,s=9jmt = 2, \mathbf{s} = 9\mathbf{j} m:

(0,9)=(23+223+2(22))i+(2332(22))j+C\left(0, 9\right) = \left(\frac{2^3 + 2^2}{3} + 2(2^2)\right)\mathbf{i} + \left(\frac{2^3}{3} - 2(2^2)\right)\mathbf{j} + \mathbf{C} C=(12,5)\mathbf{C} = \left(-12, 5\right)

Thus, the position vector s\mathbf{s} is:

s=(t3+t23+2t212)i+(t332t2+5)j\mathbf{s} = \left(\frac{t^3 + t^2}{3} + 2t^2 - 12\right)\mathbf{i} + \left(\frac{t^3}{3} - 2t^2 + 5\right)\mathbf{j}

At t=0,s=(12,5)t = 0, \mathbf{s} = \left(-12, 5\right).

Distance from OO:

s=(12)2+52=144+25=:success[13 m]|\mathbf{s}| = \sqrt{(-12)^2 + 5^2} = \sqrt{144 + 25} = :success[13 \text{ m}]

Part (b): Acceleration of P at the instant when it is moving parallel to the vector i\mathbf{i}

Parallel to i\mathbf{i} means v\mathbf{v} has the form k(1,0)k(1, 0), i.e., the jcomponentj-component of v\mathbf{v} is 00.

Given v=(3t2+2t)i+(3t24t)j\mathbf{v} = \left(3t^2 + 2t\right)\mathbf{i} + \left(3t^2 - 4t\right)\mathbf{j}:

Set the jcomponentj-component to 00:

3t24t=0t(3t4)=0t=0 or t=433t^2 - 4t = 0 \Rightarrow t(3t - 4) = 0 \Rightarrow t = 0 \text{ or } t = \frac{4}{3}

To find acceleration, differentiate v \mathbf{v} with respect to tt:

a=dvdt=ddt(3t2+2t)i+ddt(3t24t)j=(6t+2)i+(6t4)j\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d}{dt} \left(3t^2 + 2t\right)\mathbf{i} + \frac{d}{dt} \left(3t^2 - 4t\right)\mathbf{j} = \left(6t + 2\right)\mathbf{i} + \left(6t - 4\right)\mathbf{j}

Substitute t=43t = \frac{4}{3} to find a\mathbf{a} at that instant:

a=(6(43)+2)i+(6(43)4)j=(8+2)i+(84)j=:success[(10,4) ms2]\mathbf{a} = \left(6\left(\frac{4}{3}\right) + 2\right)\mathbf{i} + \left(6\left(\frac{4}{3}\right) - 4\right)\mathbf{j} = \left(8 + 2\right)\mathbf{i} + \left(8 - 4\right)\mathbf{j} = :success[\left(10, 4\right) \text{ ms\(^{-2}\)}]
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Using Calculus in 2D

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

10 flashcards

Flashcards on Using Calculus in 2D

Revise key concepts with interactive flashcards.

Try Maths Mechanics Flashcards

1 quizzes

Quizzes on Using Calculus in 2D

Test your knowledge with fun and engaging quizzes.

Try Maths Mechanics Quizzes

29 questions

Exam questions on Using Calculus in 2D

Boost your confidence with real exam questions.

Try Maths Mechanics Questions

27 exams created

Exam Builder on Using Calculus in 2D

Create custom exams across topics for better practice!

Try Maths Mechanics exam builder

29 papers

Past Papers on Using Calculus in 2D

Practice past papers to reinforce exam experience.

Try Maths Mechanics Past Papers

Other Revision Notes related to Using Calculus in 2D you should explore

Discover More Revision Notes Related to Using Calculus in 2D to Deepen Your Understanding and Improve Your Mastery

Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered