2.4.1 Using Calculus in 2D
Vectors in Kinematics with Non-Constant Acceleration
When acceleration is non-constant , we cannot use SUVAT equations. We must use calculus.
Relationships:
d s d t = v (velocity) and d v d t = a (acceleration) \frac{d\mathbf{s}}{dt} = \mathbf{v} \quad \text{(velocity)} \quad \text{and} \quad \frac{d\mathbf{v}}{dt} = \mathbf{a} \quad \text{(acceleration)} d t d s = v (velocity) and d t d v = a (acceleration)
s = ∫ v d t (displacement) and v = ∫ a d t \mathbf{s} = \int \mathbf{v} \, dt \quad \text{(displacement)} \quad \text{and} \quad \mathbf{v} = \int \mathbf{a} \, dt s = ∫ v d t (displacement) and v = ∫ a d t
Problem 1:
Solution:
(a): Velocity of P
Velocity v = d r d t \mathbf{v} = \frac{d\mathbf{r}}{dt} v = d t d r :
v = d d t ( 3 t − 4 ) i + d d t ( t 3 − 4 t ) j = ( 3 ) i + ( 3 t 2 − 4 ) j l e t t = 3 : v = 3 i + ( 3 ( 3 2 ) − 4 ) j = ( 3 i + 23 j ) m s − 1 \mathbf{v} = \frac{d}{dt} \left(3t - 4\right)\mathbf{i} + \frac{d}{dt} \left(t^3 - 4t\right)\mathbf{j} = \left(3\right)\mathbf{i} + \left(3t^2 - 4\right)\mathbf{j}
\\
let \ t = 3:\\
\\
\mathbf{v} = 3\mathbf{i} + \left(3(3^2) - 4\right)\mathbf{j} = \left(3\mathbf{i} + 23\mathbf{j}\right) \text{ m s\(^{-1}\)}
v = d t d ( 3 t − 4 ) i + d t d ( t 3 − 4 t ) j = ( 3 ) i + ( 3 t 2 − 4 ) j l e t t = 3 : v = 3 i + ( 3 ( 3 2 ) − 4 ) j = ( 3 i + 23 j ) m s − 1
(b): Acceleration of P
Acceleration a = d v d t \mathbf{a} = \frac{d\mathbf{v}}{dt} a = d t d v :
a = d d t ( 3 ) i + d d t ( 3 t 2 − 4 ) j = ( 0 ) i + ( 6 t ) j \mathbf{a} = \frac{d}{dt} \left(3\right)\mathbf{i} + \frac{d}{dt} \left(3t^2 - 4\right)\mathbf{j} = \left(0\right)\mathbf{i} + \left(6t\right)\mathbf{j} a = d t d ( 3 ) i + d t d ( 3 t 2 − 4 ) j = ( 0 ) i + ( 6 t ) j
At t = 3:
a = ( 0 i + 18 j ) m s − 2 \mathbf{a} = \left(0\mathbf{i} + 18\mathbf{j}\right) \text{ m s\(^{-2}\)}
a = ( 0 i + 18 j ) m s − 2
Problem 2:
Solution:
Velocity v \mathbf{v} v is given by:
v = ( t 2 i + ( 2 t − 3 ) j ) \mathbf{v} = \left(t^2 \mathbf{i} + (2t - 3)\mathbf{j}\right) v = ( t 2 i + ( 2 t − 3 ) j )
To find acceleration a \mathbf{a} a :
a = d v d t = d d t ( t 2 i + ( 2 t − 3 ) j ) = ( 2 t ) i + ( 2 ) j \mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d}{dt} \left(t^2 \mathbf{i} + (2t - 3)\mathbf{j}\right) = \left(2t\right)\mathbf{i} + \left(2\right)\mathbf{j} a = d t d v = d t d ( t 2 i + ( 2 t − 3 ) j ) = ( 2 t ) i + ( 2 ) j
At t = 4 t = 4 t = 4 :
a = ( 2 ( 4 ) ) i + ( 2 ) j = ( 8 i + 2 j ) m s − 2 \mathbf{a} = \left(2(4)\right)\mathbf{i} + \left(2\right)\mathbf{j} = \left(8\mathbf{i} + 2\mathbf{j}\right) \text{ m s\(^{-2}\)} a = ( 2 ( 4 ) ) i + ( 2 ) j = ( 8 i + 2 j ) m s − 2
Using F = m a \mathbf{F} = m\mathbf{a} F = m a and mass m = m = m = 3 × 1 0 − 3 k g 3 \times 10^{-3} kg 3 × 1 0 − 3 k g :
F = 0.003 × ( 8 i + 2 j ) = ( 0.024 i + 0.006 j ) N \mathbf{F} = 0.003 \times \left(8\mathbf{i} + 2\mathbf{j}\right) = \left(0.024\mathbf{i} + 0.006\mathbf{j}\right) \text{ N}
F = 0.003 × ( 8 i + 2 j ) = ( 0.024 i + 0.006 j ) N
Problem 3:
Solution:
Part (a): Distance of P P P from O O O when t = 0 t = 0 t = 0
Given:
v = ( 3 t 2 + 2 t ) i + ( 3 t 2 − 4 t ) j \mathbf{v} = \left(3t^2 + 2t\right)\mathbf{i} + \left(3t^2 - 4t\right)\mathbf{j} v = ( 3 t 2 + 2 t ) i + ( 3 t 2 − 4 t ) j
To find the position vector s , : h i g h l i g h t [ i n t e g r a t e ] v \mathbf{s}, :highlight[integrate] \mathbf{v} s , : hi g h l i g h t [ in t e g r a t e ] v with respect to t t t :
s = ∫ v d t = ( t 3 + t 2 3 + 2 t 2 2 ) i + ( t 3 3 − 2 t 2 ) j + C \mathbf{s} = \int \mathbf{v} \, dt = \left(\frac{t^3 + t^2}{3} + \frac{2t^2}{2}\right)\mathbf{i} + \left(\frac{t^3}{3} - 2t^2\right)\mathbf{j} + \mathbf{C} s = ∫ v d t = ( 3 t 3 + t 2 + 2 2 t 2 ) i + ( 3 t 3 − 2 t 2 ) j + C
When t = 2 , s = 9 j m t = 2, \mathbf{s} = 9\mathbf{j} m t = 2 , s = 9 j m :
( 0 , 9 ) = ( 2 3 + 2 2 3 + 2 ( 2 2 ) ) i + ( 2 3 3 − 2 ( 2 2 ) ) j + C \left(0, 9\right) = \left(\frac{2^3 + 2^2}{3} + 2(2^2)\right)\mathbf{i} + \left(\frac{2^3}{3} - 2(2^2)\right)\mathbf{j} + \mathbf{C} ( 0 , 9 ) = ( 3 2 3 + 2 2 + 2 ( 2 2 ) ) i + ( 3 2 3 − 2 ( 2 2 ) ) j + C
C = ( − 12 , 5 ) \mathbf{C} = \left(-12, 5\right) C = ( − 12 , 5 )
Thus, the position vector s \mathbf{s} s is:
s = ( t 3 + t 2 3 + 2 t 2 − 12 ) i + ( t 3 3 − 2 t 2 + 5 ) j \mathbf{s} = \left(\frac{t^3 + t^2}{3} + 2t^2 - 12\right)\mathbf{i} + \left(\frac{t^3}{3} - 2t^2 + 5\right)\mathbf{j} s = ( 3 t 3 + t 2 + 2 t 2 − 12 ) i + ( 3 t 3 − 2 t 2 + 5 ) j
At t = 0 , s = ( − 12 , 5 ) t = 0, \mathbf{s} = \left(-12, 5\right) t = 0 , s = ( − 12 , 5 ) .
Distance from O O O :
∣ s ∣ = ( − 12 ) 2 + 5 2 = 144 + 25 = : s u c c e s s [ 13 m ] |\mathbf{s}| = \sqrt{(-12)^2 + 5^2} = \sqrt{144 + 25} = :success[13 \text{ m}] ∣ s ∣ = ( − 12 ) 2 + 5 2 = 144 + 25 =: s u ccess [ 13 m ]
Part (b): Acceleration of P at the instant when it is moving parallel to the vector i \mathbf{i} i
Parallel to i \mathbf{i} i means v \mathbf{v} v has the form k ( 1 , 0 ) k(1, 0) k ( 1 , 0 ) , i.e., the j − c o m p o n e n t j-component j − co m p o n e n t of v \mathbf{v} v is 0 0 0 .
Given v = ( 3 t 2 + 2 t ) i + ( 3 t 2 − 4 t ) j \mathbf{v} = \left(3t^2 + 2t\right)\mathbf{i} + \left(3t^2 - 4t\right)\mathbf{j} v = ( 3 t 2 + 2 t ) i + ( 3 t 2 − 4 t ) j :
Set the j − c o m p o n e n t j-component j − co m p o n e n t to 0 0 0 :
3 t 2 − 4 t = 0 ⇒ t ( 3 t − 4 ) = 0 ⇒ t = 0 or t = 4 3 3t^2 - 4t = 0 \Rightarrow t(3t - 4) = 0 \Rightarrow t = 0 \text{ or } t = \frac{4}{3} 3 t 2 − 4 t = 0 ⇒ t ( 3 t − 4 ) = 0 ⇒ t = 0 or t = 3 4
To find acceleration, differentiate v \mathbf{v} v with respect to t t t :
a = d v d t = d d t ( 3 t 2 + 2 t ) i + d d t ( 3 t 2 − 4 t ) j = ( 6 t + 2 ) i + ( 6 t − 4 ) j \mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d}{dt} \left(3t^2 + 2t\right)\mathbf{i} + \frac{d}{dt} \left(3t^2 - 4t\right)\mathbf{j} = \left(6t + 2\right)\mathbf{i} + \left(6t - 4\right)\mathbf{j} a = d t d v = d t d ( 3 t 2 + 2 t ) i + d t d ( 3 t 2 − 4 t ) j = ( 6 t + 2 ) i + ( 6 t − 4 ) j
Substitute t = 4 3 t = \frac{4}{3} t = 3 4 to find a \mathbf{a} a at that instant:
a = ( 6 ( 4 3 ) + 2 ) i + ( 6 ( 4 3 ) − 4 ) j = ( 8 + 2 ) i + ( 8 − 4 ) j = : s u c c e s s [ ( 10 , 4 ) ms − 2 ] \mathbf{a} = \left(6\left(\frac{4}{3}\right) + 2\right)\mathbf{i} + \left(6\left(\frac{4}{3}\right) - 4\right)\mathbf{j} = \left(8 + 2\right)\mathbf{i} + \left(8 - 4\right)\mathbf{j} = :success[\left(10, 4\right) \text{ ms\(^{-2}\)}] a = ( 6 ( 3 4 ) + 2 ) i + ( 6 ( 3 4 ) − 4 ) j = ( 8 + 2 ) i + ( 8 − 4 ) j =: s u ccess [ ( 10 , 4 ) ms − 2 ]