Photo AI

Last Updated Sep 27, 2025

Vectors in 3 Dimensions Simplified Revision Notes

Revision notes with simplified explanations to understand Vectors in 3 Dimensions quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

320+ students studying

11.2.1 Vectors in 3 Dimensions

Vectors in 3D

Magnitude of a 3D Vector

infoNote

The magnitude of a vector is its length and is calculated as follows: Given a vector a=(xyz)\mathbf{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, its magnitude a|\mathbf{a}| is given by:

a=x2+y2+z2|\mathbf{a}| = \sqrt{x^2 + y^2 + z^2}

infoNote

📑Example 1: Finding the Distance Between Two Position Vectors

Find the distance between position vectors A=(231) and B=(263)\mathbf{A} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \ and \ \mathbf{B} = \begin{pmatrix} -2 \\ 6 \\ 3 \end{pmatrix}.

  1. Calculate the vector AB\overrightarrow{AB} by subtracting A\mathbf{A} from B\mathbf{B}:
AB=BA=(263)(231)=(432)\overrightarrow{AB} = \mathbf{B} - \mathbf{A} = \begin{pmatrix} -2 \\ 6 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix}
  1. Find the magnitude AB|\overrightarrow{AB}|:
AB=(4)2+32+22=16+9+4=29|\overrightarrow{AB}| = \sqrt{(-4)^2 + 3^2 + 2^2} = \sqrt{16 + 9 + 4} = \sqrt{29}
infoNote

📑Example 2: Finding a Unit Vector Parallel to a Given Vector

Find a unit vector that runs parallel to a=(614) \mathbf{a} = \begin{pmatrix} 6 \\ 1 \\ 4 \end{pmatrix}.

  • Note: A unit vector is a vector of length 1.
  1. Calculate the magnitude of a\mathbf{a}:
a=62+12+42=36+1+16=53|\mathbf{a}| = \sqrt{6^2 + 1^2 + 4^2} = \sqrt{36 + 1 + 16} = \sqrt{53}
  1. To find the unit vector a^,:highlight[divide] a\hat{\mathbf{a}}, :highlight[divide] \ \mathbf{a} by its magnitude:
a^=153(614)=(653153453)\hat{\mathbf{a}} = \frac{1}{\sqrt{53}} \begin{pmatrix} 6 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{6}{\sqrt{53}} \\ \frac{1}{\sqrt{53}} \\ \frac{4}{\sqrt{53}} \end{pmatrix}

infoNote

📑Example 3:

Given that ξ=(λ2λμ)is:highlight[parallel]to(243)\mathbf{\xi} = \begin{pmatrix} \lambda \\ -2\lambda \\ \mu \end{pmatrix} is :highlight[parallel] to \begin{pmatrix} 2 \\ -4 \\ -3 \end{pmatrix}:

a) Show that 3λ+2μ=03\lambda + 2\mu = 0.

b) Given also that ξ=229|\mathbf{\xi}| = 2\sqrt{29}, find the nonzero values of λ\lambda and μ\mu.


Solution:

Part a:

  • Note: In 3D, we discuss directions and not gradients. If two lines are parallel, they have the same direction, i.e., one direction is a multiple of the other. Thus, we can say:
(λ2λμ)=k(243)\begin{pmatrix} \lambda \\ -2\lambda \\ \mu \end{pmatrix} = k \begin{pmatrix} 2 \\ -4 \\ -3 \end{pmatrix}

ξ\mathbf{\xi} is equal to some multiple of (243)\begin{pmatrix} 2 \\ -4 \\ -3 \end{pmatrix}.

  • From this, we can form three simultaneous equations:
x: λ=2k\text{x: } \lambda = 2ky: 2λ=4k÷2λ=2k(same info as x)\text{y: } -2\lambda = -4k \div -2 \Rightarrow \lambda = 2k\quad \text{(same info as x)}z: μ=3k\text{z: } \mu = -3k
  • Eliminating kk from the xx and zz equations:
k=λ2k = \frac{\lambda}{2}μ=3(λ2)=3λ2\mu = -3\left(\frac{\lambda}{2}\right) = -\frac{3\lambda}{2}
  • Since μ=3λ2\mu = -\frac{3\lambda}{2}, then 2μ=3λ2\mu = -3\lambda.
  • Therefore, 3λ+2μ=03\lambda + 2\mu = 0.

Part b:

  • Given:
ξ=(λ)2+(2λ)2+(μ)2|\mathbf{\xi}| = \sqrt{(\lambda)^2 + (-2\lambda)^2 + (\mu)^2}=λ2+4λ2+μ2=5λ2+μ2=229= \sqrt{\lambda^2 + 4\lambda^2 + \mu^2} = \sqrt{5\lambda^2 + \mu^2} = 2\sqrt{29}
  • Squaring both sides:
5λ2+μ2=1165\lambda^2 + \mu^2 = 1165λ2+(3λ2)2=1165\lambda^2 + \left(-\frac{3\lambda}{2}\right)^2 = 116 5λ2+9λ24=116\Rightarrow 5\lambda^2 + \frac{9\lambda^2}{4} = 11620λ2+9λ2=46429λ2=464λ2=16\Rightarrow 20\lambda^2 + 9\lambda^2 = 464 \quad \Rightarrow 29\lambda^2 = 464 \quad \Rightarrow \lambda^2 = 16λ=±4\Rightarrow \lambda = \pm 4
  • Case 1: If λ=4\lambda = 4, then:
μ=3(4)2=6\mu = -\frac{3(4)}{2} = -6
  • Case 2: If λ=4\lambda = -4, then:
μ=3(4)2=6\mu = -\frac{3(-4)}{2} = 6

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Vectors in 3 Dimensions

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

60 flashcards

Flashcards on Vectors in 3 Dimensions

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

6 quizzes

Quizzes on Vectors in 3 Dimensions

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

29 questions

Exam questions on Vectors in 3 Dimensions

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Vectors in 3 Dimensions

Create custom exams across topics for better practice!

Try Maths Pure exam builder

12 papers

Past Papers on Vectors in 3 Dimensions

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Vectors in 3 Dimensions you should explore

Discover More Revision Notes Related to Vectors in 3 Dimensions to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Vectors in 2 Dimensions

Magnitude & Direction

user avatar
user avatar
user avatar
user avatar
user avatar

209+ studying

188KViews

96%

114 rated

Vectors in 2 Dimensions

Vector Addition

user avatar
user avatar
user avatar
user avatar
user avatar

487+ studying

190KViews

96%

114 rated

Vectors in 2 Dimensions

Position Vectors

user avatar
user avatar
user avatar
user avatar
user avatar

347+ studying

187KViews

96%

114 rated

Vectors in 2 Dimensions

Problem Solving using Vectors

user avatar
user avatar
user avatar
user avatar
user avatar

288+ studying

184KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered