Photo AI

Last Updated Sep 27, 2025

Trigonometry Exact Values Simplified Revision Notes

Revision notes with simplified explanations to understand Trigonometry Exact Values quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

306+ students studying

5.4.2 Trigonometry Exact Values

Exact values in trigonometry refer to the precise values of trigonometric functions for specific angles, typically those that are commonly used in mathematics, such as 00^\circ, 3030^\circ, 4545^\circ, 6060^\circ, and 9090^\circ. These values are often memorized or derived using geometrical methods, like the unit circle or special triangles.

1. Exact Values for Sine, Cosine, and Tangent:

Angle (θ)(\theta)sinθ\sin \theta cosθ\cos \thetatanθ\tan \theta
0 or 0 radians 0^\circ \ or \ 0 \ radians00 1\ 1  0\ 0
 30 or π6 radians\ 30^\circ \ or \ \frac{\pi}{6} \ radians 12\ \frac{1}{2}  32\ \frac{\sqrt{3}}{2}  13 or 33\ \frac{1}{\sqrt{3}} \ or \ \frac{\sqrt{3}}{3}
 45 or π4 radians\ 45^\circ \ or \ \frac{\pi}{4} \ radians 22\ \frac{\sqrt{2}}{2}  22\ \frac{\sqrt{2}}{2}  1\ 1
 60 or π3 radians\ 60^\circ \ or \ \frac{\pi}{3} \ radians 32\ \frac{\sqrt{3}}{2}  12\ \frac{1}{2}  3\ \sqrt{3}
 90 or π2 radians\ 90^\circ \ or \ \frac{\pi}{2} \ radians 1\ 1  0\ 0 Undefined

2. Exact Values for Cosecant, Secant, and Cotangent:

Angle (θ)(\theta) cscθ\ \csc \theta  secθ\ \sec \theta  cotθ\ \cot \theta
 0 or 0 radians\ 0^\circ \ or \ 0 \ radiansUndefined 1\ 1 Undefined
 30 or π6 radians\ 30^\circ \ or \ \frac{\pi}{6} \ radians 2\ 2  23 or 233\ \frac{2}{\sqrt{3}} \ or \ \frac{2\sqrt{3}}{3}  3\ \sqrt{3}
 45 or π4 radians\ 45^\circ \ or \ \frac{\pi}{4} \ radians 2\ \sqrt{2}  2\ \sqrt{2}  1\ 1
 60 or π3 radians\ 60^\circ \ or \ \frac{\pi}{3} \ radians 23 or 233\ \frac{2}{\sqrt{3}} \ or \ \frac{2\sqrt{3}}{3}  2\ 2  13 or 33\ \frac{1}{\sqrt{3}} \ or \ \frac{\sqrt{3}}{3}
 90 or π2 radians\ 90^\circ \ or \ \frac{\pi}{2} \ radians 1\ 1 Undefined 0\ 0

3. Deriving Exact Values Using Special Triangles:

1. 30°-60°-90° Triangle:

Consider an equilateral triangle with each side of length 2. If you draw an altitude, it splits the triangle into two 30°60°90°30°-60°-90° triangles.

  • Hypotenuse = 22

  • Shorter leg (opposite 30°) = 11

  • Longer leg (opposite 60°) =3 \sqrt{3} From this, you get:

  • sin30=12\sin 30^\circ = \frac{1}{2}

  • cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2}

  • tan30=13\tan 30^\circ = \frac{1}{\sqrt{3}}

  • sin60=32\sin 60^\circ = \frac{\sqrt{3}}{2}

  • cos60=12\cos 60^\circ = \frac{1}{2}

  • tan60=3\tan 60^\circ = \sqrt{3}

2. 45°-45°-90° Triangle:

Consider a right-angled isosceles triangle, where each leg is of length 1.

  • Hypotenuse = 2\sqrt{2} From this, you get:

  • sin45=12=22\sin 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}

  • cos45=12=22\cos 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}

  • tan45=1\tan 45^\circ = 1

3. Unit Circle Approach:

The unit circle is a circle with a radius of 1 centred at the origin of the coordinate plane. The coordinates of any point on the unit circle correspond to  (cosθ,sinθ).\ (\cos \theta, \sin \theta) .

  • At  θ=0 or 0\ \theta = 0^\circ \ or \ 0 radians, the coordinates are  (1,0),\ (1, 0) , so  cos0=1\ \cos 0^\circ = 1 and sin0=0. \sin 0^\circ = 0 .
  • At  θ=90 or π2\ \theta = 90^\circ \ or \ \frac{\pi}{2} radians, the coordinates are  (0,1)\ (0, 1) , so  cos90=0\ \cos 90^\circ = 0 and sin90=1 \sin 90^\circ = 1 .
  • At  θ=180 or π\ \theta = 180^\circ \ or \ \pi radians, the coordinates are (1,0)\ (-1, 0), so  cos180=1\ \cos 180^\circ = -1 and  sin180=0.\ \sin 180^\circ = 0 .
  • At  θ=270 or 3π2\ \theta = 270^\circ \ or \ \frac{3\pi}{2} radians, the coordinates are  (0,1)\ (0, -1) , so  cos270=0\ \cos 270^\circ = 0 and  sin270=1.\ \sin 270^\circ = -1 .

Summary:

  • Exact values of trigonometric functions are crucial in solving problems involving trigonometric equations, identities, and geometric applications.
  • Special triangles like the 30°60°90°30°-60°-90° and 45°45°90°45°-45°-90° triangles are useful tools for deriving these exact values.
  • The unit circle provides a visual and conceptual way to understand and recall the exact values of trigonometric functions at key angles.

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Trigonometry Exact Values

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

40 flashcards

Flashcards on Trigonometry Exact Values

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

4 quizzes

Quizzes on Trigonometry Exact Values

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

29 questions

Exam questions on Trigonometry Exact Values

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Trigonometry Exact Values

Create custom exams across topics for better practice!

Try Maths Pure exam builder

12 papers

Past Papers on Trigonometry Exact Values

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Trigonometry Exact Values you should explore

Discover More Revision Notes Related to Trigonometry Exact Values to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Radian Measure

Radian Measure

user avatar
user avatar
user avatar
user avatar
user avatar

359+ studying

188KViews

96%

114 rated

Radian Measure

Small Angle Approximations

user avatar
user avatar
user avatar
user avatar
user avatar

261+ studying

200KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered