Photo AI

Last Updated Sep 27, 2025

First Principles Differentiation - Trigonometry Simplified Revision Notes

Revision notes with simplified explanations to understand First Principles Differentiation - Trigonometry quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

409+ students studying

7.3.1 First Principles Differentiation - Trigonometry

First principles differentiation (or differentiation from first principles) is the process of finding the derivative of a function using the basic definition of the derivative, without relying on shortcuts or standard rules. When applied to trigonometric functions, this method involves using the limit definition of the derivative.

1. Definition of the Derivative:

infoNote

The derivative of a function f(x)f(x) with respect to x at a point x is defined by the limit: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} This formula represents the slope of the tangent line to the curve at the point x.

2. Differentiating sin(x)sin(x) from First Principles:

infoNote

To find the derivative of sin(x)\sin(x) using first principles, we use the definition of the derivative: ddxsin(x)=limh0sin(x+h)sin(x)h\frac{d}{dx} \sin(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}

Step 1: Use the Sine Addition Formula:

The sine addition formula states: sin(x+h)=sin(x)cos(h)+cos(x)sin(h)\sin(x+h) = \sin(x)\cos(h) + \cos(x)\sin(h) Substitute this into the limit definition: ddxsin(x)=limh0sin(x)cos(h)+cos(x)sin(h)sin(x)h\frac{d}{dx} \sin(x) = \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}

Step 2: Factor and Simplify:

Factor out sin(x)\sin(x) from the terms involving \sin(x): ddxsin(x)=limh0sin(x)[cos(h)1]+cos(x)sin(h)h\frac{d}{dx} \sin(x) = \lim_{h \to 0} \frac{\sin(x)[\cos(h) - 1] + \cos(x)\sin(h)}{h}

This expression can be separated into two limits: ddxsin(x)=sin(x)limh0cos(h)1h+cos(x)limh0sin(h)h\frac{d}{dx} \sin(x) = \sin(x) \cdot \lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x) \cdot \lim_{h \to 0} \frac{\sin(h)}{h}

Step 3: Evaluate the Limits:

There are two important trigonometric limits to know:

  • limh0sin(h)h=1\lim_{h \to 0} \frac{\sin(h)}{h} = 1
  • limh0cos(h)1h=0\lim_{h \to 0} \frac{\cos(h) - 1}{h} = 0 Using these limits: ddxsin(x)=sin(x)0+cos(x)1=cos(x)\frac{d}{dx} \sin(x) = \sin(x) \cdot 0 + \cos(x) \cdot 1 = \cos(x)

So, the derivative of sin(x)\sin(x) is: ddxsin(x)=cos(x)\frac{d}{dx} \sin(x) = \cos(x)

3. Differentiating cos(x)\cos(x) from First Principles:

infoNote

To find the derivative of cos(x)\cos(x) using first principles, follow a similar process: ddxcos(x)=limh0cos(x+h)cos(x)h\frac{d}{dx} \cos(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}

Step 1: Use the Cosine Addition Formula:

The cosine addition formula states: cos(x+h)=cos(x)cos(h)sin(x)sin(h)\cos(x+h) = \cos(x)\cos(h) - \sin(x)\sin(h) Substitute this into the limit definition: ddxcos(x)=limh0cos(x)cos(h)sin(x)sin(h)cos(x)h\frac{d}{dx} \cos(x) = \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)}{h}

Step 2: Factor and Simplify:

Factor out cos(x)\cos(x): ddxcos(x)=limh0cos(x)[cos(h)1]sin(x)sin(h)h\frac{d}{dx} \cos(x) = \lim_{h \to 0} \frac{\cos(x)[\cos(h) - 1] - \sin(x)\sin(h)}{h}

This can be separated into two limits: ddxcos(x)=cos(x)limh0cos(h)1hsin(x)limh0sin(h)h\frac{d}{dx} \cos(x) = \cos(x) \cdot \lim_{h \to 0} \frac{\cos(h) - 1}{h} - \sin(x) \cdot \lim_{h \to 0} \frac{\sin(h)}{h}

Step 3: Evaluate the Limits:

Using the same trigonometric limits: ddxcos(x)=cos(x)0sin(x)1=sin(x)\frac{d}{dx} \cos(x) = \cos(x) \cdot 0 - \sin(x) \cdot 1 = -\sin(x)

So, the derivative of cos(x)\cos(x) is: ddxcos(x)=sin(x)\frac{d}{dx} \cos(x) = -\sin(x)

4. Summary of First Principles Differentiation for Trigonometric Functions:

  • The derivative of sin(x) iscos(x).\sin(x)\ is \cos(x).
  • The derivative of cos(x) issin(x).\cos(x)\ is -\sin(x). These results are fundamental in calculus and are often used as a basis for deriving the derivatives of other trigonometric functions.

Differentiating Trig Functions

infoNote
  1. ddx(sinx)=cosx\frac{d}{dx} (\sin x) = \cos x Proof:
ddx(sinx)=limh0(sin(x+h)sinxh)\frac{d}{dx} (\sin x) = \lim_{h \to 0} \left (\frac{\sin(x+h) - \sin x}{h}\right )
  • Expand using compound angle formula:
=limh0(sinxcosh+sinhcosxsinxh)= \lim_{h \to 0} \left (\frac{\sin x \cos h + \sin h \cos x - \sin x}{h}\right)=limh0(sinx(cosh1)+sinhcosxh)= \lim_{h \to 0} \left (\frac{\sin x (\cos h - 1) + \sin h \cos x}{h}\right )
  • Small Angle Approximations:
cos(h)1h22,sin(h)h as h0\cos(h) \to 1 - \frac{h^2}{2}, \quad \sin(h) \to h \text{ as } h \to 0=limh0((1h22)sinx+hcosxsinxh)= \lim_{h \to 0} \left (\frac{\left(1-\frac{h^2}{2}\right) \sin x + h\cos x-sinx}{h}\right)=limh0(sinxh22sinx+hcosxsinxh)= \lim_{h \to 0} \left (\frac{\cancel{sinx}-\frac{h^2}{2}\sin x + h\cos x-\cancel{sinx}}{h}\right)=limh0(h2sinx+cosx)= \lim_{h \to 0} \left (-\frac{h}{2} \sin x + \cos x\right)=cosx= \cos x
infoNote
  1. ddx(cosx)=sinx\frac{d}{dx} (\cos x) = -\sin x Proof:
ddx(cosx)=limh0(cos(x+h)cosxh)\frac{d}{dx} (\cos x) = \lim_{h \to 0} \left (\frac{\cos(x+h) - \cos x}{h}\right)
  • Expand using compound angle formula:
=limh0(cosxcoshsinxsinhcosxh)= \lim_{h \to 0} \left(\frac{\cos x \cos h - \sin x \sin h - \cos x}{h}\right)=limh0(cosx(1h22)hsinxcosxh)= \lim_{h \to 0} \left (\frac{\cos x \left( 1-\frac {h^2}{2} \right )- h\sin x -\cos x}{h}\right)=limh0(cosxh22hsinxcosxh)= \lim_{h \to 0} \left (\frac{\cancel{\cos x} -\frac {h^2}{2}- h\sin x -\cancel{\cos x}}{h}\right) =limh0(h2cosxsinx)= \lim_{h \to 0} \left( -\frac{h}{2} \cos x - \sin x \right)=sinx= -\sin x
infoNote
ddx(tanx)=sec2x\frac{d}{dx} (\tan x) = \sec^2 x

Let y=tanx=sinxcosxy = \tan x = \dfrac{\sin x}{\cos x}

Using the quotient rule:

u=sinxdudx=cosxu = \sin x \Rightarrow \frac{du}{dx} = \cos xv=cosxdvdx=sinxv = \cos x \Rightarrow \frac{dv}{dx} = -\sin xdydx=cosxcosxsinx(sinx)(cosx)2=cos2x+sin2xcos2x=1cos2x\Rightarrow \frac{dy}{dx} = \frac{\cos x \cos x - \sin x (-\sin x)}{(\cos x)^2} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}=sec2x= \sec^2 x

infoNote
ddx(secx)=secxtanx\frac{d}{dx} (\sec x) = \sec x \tan x

Proof:

Let y=secx=(cosx)1y = \sec x = (\cos x)^{-1}

Using the chain rule:

dydx=1(cosx)2×(sinx)=sinx(cosx)2=sinxcosx=1cosx×sinxcosx=secxtanx\frac{dy}{dx} = -1(\cos x)^{-2} \times (-\sin x) = \sin x(\cos x)^{-2}=\frac{\sin x}{\cos x} = \frac{1}{\cos x} \times \frac{\sin x}{\cos x} \\= \sec x \tan x

Using the Formula Sheet

Differentiation:

f(x)f(x)f(x)f'(x)
tankx\tan kxksec2kxk \sec^2 kx
secx\sec xsecxtanx\sec x \tan x
cotx\cot xcsc2x-\csc^2 x
cscx\csc xcscxcotx-\csc x \cot x

infoNote

e.g. If y=csc(lnx+4x),find dydxy = \csc(\ln x + 4x), find\ \frac{dy}{dx}. Using the chain rule:

dydx=cosec(lnx+4x)cot(lnx+4x)×(1x+4)\frac{dy}{dx} = -cosec(\ln x + 4x) \cot(\ln x + 4x) \times \left( \frac{1}{x} + 4 \right)

(Differentiate expression without looking in bracket ×\times by diff of bracket)

=(1x+4)cosec(lnx+4x)cot(lnx+4x)=-\left (\frac {1}{x}+4\right)cosec(\ln x + 4x)cot(\ln x+4x)

infoNote

e.g. Find the differential of y=tanxsin(ex)y = \dfrac{\tan x}{\sin(e^x)}. Using the quotient rule:

u=tanxdudx=sec2x(from formula sheet)u = \tan x \Rightarrow \frac{du}{dx} = \sec^2 x \quad \text{(from formula sheet)}v=sin(ex)dvdx=cos(ex)exv = \sin(e^x) \Rightarrow \frac{dv}{dx} = \cos(e^x) e^xdydx=sin(ex)sec2xexcos(ex)tanxsin2(ex)\Rightarrow \frac{dy}{dx} = \frac{\sin(e^x) \sec^2 x - e^x \cos(e^x) \tan x}{\sin^2(e^x)}

infoNote

Find f(x)f'(x) for f(x)=csc(2x+3)cot(5x)f(x) = \csc(2x+3) \cot(5x).

Using the product rule:

f(x)=2csc(2x+3)cot(2x+3)cot(5x)5csc2(5x)csc(2x+3)\Rightarrow f'(x) = -2 \csc(2x+3) \cot(2x+3) \cot(5x) - 5 \csc^2(5x) \csc(2x+3)5csc2(5x)-5\csc^2(5x)v=cot(5x)dvdx=csc2(5x)×5v = \cot(5x) \Rightarrow \frac{dv}{dx} = -\csc^2(5x) \times 5=2csc(2x+3)cot(2x+3)=-2\csc(2x+3)\cot(2x+3)u=csc(2x+3)dudx=csc(2x+3)cot(2x+3)×2u = \csc(2x+3) \Rightarrow \frac{du}{dx} = -\csc(2x+3)\cot(2x+3) \times 2

:::


infoNote

Example: Find ddx(cos2x)\dfrac{d}{dx} (\cos^2 x) 3. Rewrite cos2x as (cosx)2 \cos^2 x \ as \ (\cos x)^2

y=(cosx)2y = (\cos x)^2
  1. Use Chain Rule
dydx=2(cosx)1×(sinx)=2sinxcosx\frac{dy}{dx} = 2 (\cos x)^1 \times (-\sin x) = -2 \sin x \cos x=sin(2x)= -\sin(2x)

infoNote

[OCR 4753, Jan 2010, Q8

] Fig. 8 shows part of the curve y=xcos3xy = x \cos 3x.

The curve crosses the x-axis at O, P and Q.

(i) Find the exact coordinates of P and Q.

(ii) Find the exact gradient of the curve at the point P.

Show also that the turning points of the curve occur when xtan3x=13x \tan 3x = \frac{1}{3}.

Solution: (i) At P,Q,y=0P, Q, y = 0

xcos(3x)=0x=0 (ignore origin) or cos(3x)=0\Rightarrow x \cos (3x) = 0 \Rightarrow x = 0 \text{ (ignore origin) or } \cos(3x) = 0cos(3x)=03x=π2,3π2x=π6,π2\Rightarrow \cos(3x) = 0 \Rightarrow 3x = \frac{\pi}{2}, \frac{3\pi}{2} \Rightarrow x = \frac{\pi}{6}, \frac{\pi}{2}P(π6,0)Q(π2,0)\therefore \boxed {P \left(\frac{\pi}{6}, 0\right)\quad Q \left(\frac{\pi}{2}, 0\right)}
infoNote

(ii)

u=xdudx=1u = x \Rightarrow \frac{du}{dx} = 1v=cos3xdvdx=3sin(3x)v = \cos 3x \Rightarrow \frac{dv}{dx} = -3 \sin(3x)dydx=cos3x3xsin3x\Rightarrow \frac{dy}{dx} = \cos 3x - 3x \sin 3x

Let x=π6dydx=cos(3π6)3π6sin(3π6)=π2x = \dfrac{\pi}{6} \Rightarrow \dfrac{dy}{dx} = \cos\left(\cancel{\frac{3\pi}{6}}\right) - \frac{3\pi}{6} \sin\left(\cancel{\frac{3\pi}{6}}\right) = -\dfrac {\pi}{2}

cos(3π6)=0sin(3π6)=1\cos\left(\cancel{\frac{3\pi}{6}}\right) = 0 \quad \sin\left(\cancel{\frac{3\pi}{6}}\right)=1

At P,dydx=π2\therefore \text{At } P, \quad \frac{dy}{dx} = -\frac{\pi}{2}
infoNote

Turning points occur when dydx=0cos(3x)3xsin(3x)=0\frac{dy}{dx} = 0 \Rightarrow \cos(3x) - 3x\sin(3x) = 0

(÷cos3x)13xsin3xcos3x=0(\div \cos 3x) \Rightarrow 1-3x \frac {\sin 3x}{\cos 3x}=013xtan3x=01 - 3x \tan 3x = 01=3xtan3xxtan3x=13 as required\Rightarrow 1 = 3x \tan 3x \Rightarrow x \tan 3x = \frac{1}{3} \text{ as required}

:::


Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master First Principles Differentiation - Trigonometry

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

70 flashcards

Flashcards on First Principles Differentiation - Trigonometry

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

7 quizzes

Quizzes on First Principles Differentiation - Trigonometry

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

29 questions

Exam questions on First Principles Differentiation - Trigonometry

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on First Principles Differentiation - Trigonometry

Create custom exams across topics for better practice!

Try Maths Pure exam builder

12 papers

Past Papers on First Principles Differentiation - Trigonometry

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to First Principles Differentiation - Trigonometry you should explore

Discover More Revision Notes Related to First Principles Differentiation - Trigonometry to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Further Differentiation

Differentiating Other Functions (Trig, ln & e etc)

user avatar
user avatar
user avatar
user avatar
user avatar

432+ studying

195KViews

96%

114 rated

Further Differentiation

Chain Rule

user avatar
user avatar
user avatar
user avatar
user avatar

429+ studying

180KViews

96%

114 rated

Further Differentiation

Product Rule

user avatar
user avatar
user avatar
user avatar
user avatar

260+ studying

190KViews

96%

114 rated

Further Differentiation

Quotient Rule

user avatar
user avatar
user avatar
user avatar
user avatar

482+ studying

188KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered