Photo AI

When she is on holidays, Barbara sees the building shown on the right - Junior Cycle Mathematics - Question 13 - 2018

Question icon

Question 13

When-she-is-on-holidays,-Barbara-sees-the-building-shown-on-the-right-Junior Cycle Mathematics-Question 13-2018.png

When she is on holidays, Barbara sees the building shown on the right. She wants to estimate the surface area of one of the spheres in the building. She estimates th... show full transcript

Worked Solution & Example Answer:When she is on holidays, Barbara sees the building shown on the right - Junior Cycle Mathematics - Question 13 - 2018

Step 1

Using Barbara's estimate for the radius, work out her estimate of the surface area of this sphere.

96%

114 rated

Answer

To calculate the surface area (S.A.) of a sphere, we use the formula:

S.A.=4πr2S.A. = 4\pi r^2

Given Barbara's estimated radius, r=9 mr = 9 \text{ m}:

S.A.=4π(9)2S.A. = 4\pi (9)^2 S.A.=4π×81S.A. = 4\pi \times 81 S.A.=324π m2S.A. = 324\pi \text{ m}^2

Thus, Barbara's estimate of the surface area of the sphere is 324π m2324\pi \text{ m}^2.

Step 2

Work out the maximum value of the percentage error in Barbara's estimate of the surface area of this sphere.

99%

104 rated

Answer

First, we need to calculate the actual surface area using the extreme radius values of 8 m and 10 m:

  1. For r=8 mr = 8 \text{ m}:

    S.A.=4π(8)2=4π(64)=256π m2S.A. = 4\pi (8)^2 = 4\pi (64) = 256\pi \text{ m}^2

    The error in estimate is:

    Error=324π256π=68π\text{Error} = 324\pi - 256\pi = 68\pi

    Now, we find the percentage error:

    %Error=(ErrorActual S.A.)×100=(68π256π)×100=68256×10026.5%27%\% \text{Error} = \left( \frac{\text{Error}}{\text{Actual S.A.}} \right) \times 100 = \left( \frac{68\pi}{256\pi} \right) \times 100 = \frac{68}{256} \times 100 \approx 26.5\% \approx 27\% (to the nearest percent)

  2. For r=10 mr = 10 \text{ m}:

    S.A.=4π(10)2=4π(100)=400π m2S.A. = 4\pi (10)^2 = 4\pi (100) = 400\pi \text{ m}^2

    The error in estimate is:

    Error=400π324π=76π\text{Error} = 400\pi - 324\pi = 76\pi

    Now, we find the percentage error:

    %Error=(76π400π)×100=76400×100=19%\% \text{Error} = \left( \frac{76\pi}{400\pi} \right) \times 100 = \frac{76}{400} \times 100 = 19\%

The maximum value of the percentage error is therefore:

max(27%,19%)=27%\max(27\%, 19\%) = 27\%

Join the Junior Cycle students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;