Photo AI

A rectangle ABCD has a length of 50 m and a width of 25 m - Junior Cycle Mathematics - Question 2 - 2017

Question icon

Question 2

A-rectangle-ABCD-has-a-length-of-50-m-and-a-width-of-25-m-Junior Cycle Mathematics-Question 2-2017.png

A rectangle ABCD has a length of 50 m and a width of 25 m. (a) Find the area of the rectangle ABCD. (b) Find the length of the perimeter of the rectangle ABCD. [A... show full transcript

Worked Solution & Example Answer:A rectangle ABCD has a length of 50 m and a width of 25 m - Junior Cycle Mathematics - Question 2 - 2017

Step 1

Find the area of the rectangle ABCD.

96%

114 rated

Answer

To find the area of a rectangle, we use the formula:

Area=Length×Breadth\text{Area} = \text{Length} \times \text{Breadth}

Substituting the values: Area=50 m×25 m=1250 m2\text{Area} = 50 \text{ m} \times 25 \text{ m} = 1250 \text{ m}^2

Thus, the area of rectangle ABCD is 1250 m².

Step 2

Find the length of the perimeter of the rectangle ABCD.

99%

104 rated

Answer

To find the perimeter of a rectangle, we use the formula:

Perimeter=2×(Length+Breadth)\text{Perimeter} = 2 \times (\text{Length} + \text{Breadth})

Substituting the values: Perimeter=2×(50 m+25 m)=2×75 m=150 m\text{Perimeter} = 2 \times (50 \text{ m} + 25 \text{ m}) = 2 \times 75 \text{ m} = 150 \text{ m}

Thus, the length of the perimeter of rectangle ABCD is 150 m.

Step 3

Find the area of the shaded region AEFD.

96%

101 rated

Answer

To calculate the area of the shaded region AEFD, we can divide it into a rectangle and a triangle.

  1. Calculate the area of rectangle AEBF:

    • The dimensions are 10 m by 25 m, hence: AreaAEBF=10 m×25 m=250 m2\text{Area}_{AEBF} = 10 \text{ m} \times 25 \text{ m} = 250 \text{ m}^2
  2. Calculate the area of triangle EFD:

    • The base (EF) is 20 m (length from E to F) and the height is 10 m. The area of the triangle is given by: AreaEFD=12×base×height=12×20 m×10 m=100 m2\text{Area}_{EFD} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 20 \text{ m} \times 10 \text{ m} = 100 \text{ m}^2
  3. Total area of shaded region AEFD: AreaAEFD=AreaAEBF+AreaEFD=250 m2+100 m2=350 m2\text{Area}_{AEFD} = \text{Area}_{AEBF} + \text{Area}_{EFD} = 250 \text{ m}^2 + 100 \text{ m}^2 = 350 \text{ m}^2

Thus, the area of the shaded region AEFD is 350 m².

Step 4

Use the theorem of Pythagoras to show that |EF| = 32 m, correct to the nearest metre.

98%

120 rated

Answer

In triangle EFD, we apply the Pythagorean theorem:

c2=a2+b2c^2 = a^2 + b^2

Let:

  • |EF| be side c,
  • The vertical distance (height) ED be a = 20 m,
  • The horizontal distance (width) DF be b = 25 m.

Therefore, EF2=202+252=400+625=1025|EF|^2 = 20^2 + 25^2 = 400 + 625 = 1025

Thus, taking the square root: EF=102532.02 m|EF| = \sqrt{1025} \approx 32.02 \text{ m}

Rounded to the nearest metre, |EF| = 32 m.

Step 5

Hence find the length of the perimeter of the shaded region AEFD.

97%

117 rated

Answer

To find the perimeter of the shaded region AEFD, we add the lengths of all its sides:

  1. Lengths of AE = 10 m,
  2. Lengths EF = 32 m (found above),
  3. Lengths FD = 10 m,
  4. Lengths AD = 25 m.

Calculating the total perimeter: PerimeterAEFD=10+32+10+25=77 m\text{Perimeter}_{AEFD} = 10 + 32 + 10 + 25 = 77 \text{ m}

Thus, the length of the perimeter of the shaded region AEFD is 77 m.

Join the Junior Cycle students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;