Photo AI

A smooth sphere A, of mass 2 kg, collides directly with another smooth sphere B, of mass 5 kg, on a smooth horizontal table - Leaving Cert Applied Maths - Question 5 - 2014

Question icon

Question 5

A-smooth-sphere-A,-of-mass-2-kg,-collides-directly-with-another-smooth-sphere-B,-of-mass-5-kg,-on-a-smooth-horizontal-table-Leaving Cert Applied Maths-Question 5-2014.png

A smooth sphere A, of mass 2 kg, collides directly with another smooth sphere B, of mass 5 kg, on a smooth horizontal table. A and B are moving in the same directio... show full transcript

Worked Solution & Example Answer:A smooth sphere A, of mass 2 kg, collides directly with another smooth sphere B, of mass 5 kg, on a smooth horizontal table - Leaving Cert Applied Maths - Question 5 - 2014

Step 1

i) the speed of B after the collision

96%

114 rated

Answer

First, we can use the impulse-momentum theorem. The impulse given to B is equal to the change in momentum:

I=mB(v2fv2i)I = m_B (v_{2f} - v_{2i})

Where:

  • I=5I = 5 N s
  • mB=5m_B = 5 kg
  • v2i=2v_{2i} = 2 m s⁻¹ (initial speed of B)

Substituting these values gives us:

5=5(v2f2)5 = 5(v_{2f} - 2)

Solving for v2fv_{2f}:

v2f=3extms1v_{2f} = 3 ext{ m s}^{-1}

Step 2

ii) the speed of A after the collision

99%

104 rated

Answer

Using the conservation of momentum before and after the collision for both B and A:

mAv1i+mBv2i=mAv1f+mBv2fm_A v_{1i} + m_B v_{2i} = m_A v_{1f} + m_B v_{2f}

Where:

  • mA=2m_A = 2 kg, v1i=4v_{1i} = 4 m s⁻¹ (initial speed of A)
  • v2f=3v_{2f} = 3 m s⁻¹ (final speed of B)

Plugging in the values:

2imes4+5imes2=2v1f+5imes32 imes 4 + 5 imes 2 = 2 v_{1f} + 5 imes 3

This simplifies to: 18=2v1f+1518 = 2 v_{1f} + 15 3=2v1f3 = 2 v_{1f}

Thus: v1f=1.5extms1v_{1f} = 1.5 ext{ m s}^{-1}

Step 3

iii) the coefficient of restitution for the collision

96%

101 rated

Answer

The coefficient of restitution (e) is defined as the ratio of the relative speeds after and before collision:

e=v2fv1fv1iv2ie = \frac{v_{2f} - v_{1f}}{v_{1i} - v_{2i}}

Using the speeds we found:

  • v2f=3v_{2f} = 3 m s⁻¹
  • v1f=1.5v_{1f} = 1.5 m s⁻¹
  • v1i=4v_{1i} = 4 m s⁻¹
  • v2i=2v_{2i} = 2 m s⁻¹

Substituting these values gives:

e=31.542=1.52=34e = \frac{3 - 1.5}{4 - 2} = \frac{1.5}{2} = \frac{3}{4}

Step 4

iv) the loss in kinetic energy due to the collision.

98%

120 rated

Answer

We can calculate the initial and final kinetic energies:

Initial K.E.: KEinitial=12mAv1i2+12mBv2i2KE_{initial} = \frac{1}{2} m_A v_{1i}^2 + \frac{1}{2} m_B v_{2i}^2 Substituting: KEinitial=12(2)(42)+12(5)(22)=16+10=26KE_{initial} = \frac{1}{2} (2)(4^2) + \frac{1}{2} (5)(2^2) = 16 + 10 = 26

Final K.E.: KEfinal=12mAv1f2+12mBv2f2KE_{final} = \frac{1}{2} m_A v_{1f}^2 + \frac{1}{2} m_B v_{2f}^2 Substituting: KEfinal=12(2)(1.52)+12(5)(32)=2.25+22.5=24.75KE_{final} = \frac{1}{2} (2)(1.5^2) + \frac{1}{2} (5)(3^2) = 2.25 + 22.5 = 24.75

Thus, the loss in kinetic energy: KEloss=KEinitialKEfinal=2624.75=1.25extJKE_{loss} = KE_{initial} - KE_{final} = 26 - 24.75 = 1.25 ext{ J}

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;