Photo AI

A smooth sphere A, of mass 4 kg, collides directly with another smooth sphere B, of mass 1 kg, on a smooth horizontal table - Leaving Cert Applied Maths - Question 5 - 2013

Question icon

Question 5

A-smooth-sphere-A,-of-mass-4-kg,-collides-directly-with-another-smooth-sphere-B,-of-mass-1-kg,-on-a-smooth-horizontal-table-Leaving Cert Applied Maths-Question 5-2013.png

A smooth sphere A, of mass 4 kg, collides directly with another smooth sphere B, of mass 1 kg, on a smooth horizontal table. A and B are moving in opposite directio... show full transcript

Worked Solution & Example Answer:A smooth sphere A, of mass 4 kg, collides directly with another smooth sphere B, of mass 1 kg, on a smooth horizontal table - Leaving Cert Applied Maths - Question 5 - 2013

Step 1

the speed of A and the speed of B after the collision

96%

114 rated

Answer

Let the speeds of A and B after the collision be denoted as vav_a and vbv_b respectively.

Using the principle of conservation of linear momentum: 4(3)+1(2)=4va+1vb4(3) + 1(-2) = 4v_a + 1v_b Thus, 122=4va+vb10=4va+vb(1)12 - 2 = 4v_a + v_b \\ 10 = 4v_a + v_b \\ (1)

Using the coefficient of restitution: e=vbvauaube = \frac{v_b - v_a}{u_a - u_b} Where:

  • ua=3extm/su_a = 3 ext{ m/s} (speed of A before collision)
  • ub=2extm/su_b = -2 ext{ m/s} (speed of B before collision)

Plugging in the values: 12=vbva3(2)=vbva5vbva=52(2)\frac{1}{2} = \frac{v_b - v_a}{3 - (-2)} = \frac{v_b - v_a}{5} \\ v_b - v_a = \frac{5}{2} \\ (2)

Now, we have two equations:

  1. 10=4va+vb10 = 4v_a + v_b
  2. vbva=52v_b - v_a = \frac{5}{2}

From equation (2), we get: vb=va+52(3)v_b = v_a + \frac{5}{2} \\ (3)

Substituting (3) in (1): 10=4va+(va+52)10=5va+525va=10525va=202525va=152va=32extm/sva=1.5extm/s10 = 4v_a + (v_a + \frac{5}{2}) \\ 10 = 5v_a + \frac{5}{2} \\ 5v_a = 10 - \frac{5}{2} \\ 5v_a = \frac{20}{2} - \frac{5}{2} \\ 5v_a = \frac{15}{2} \\ v_a = \frac{3}{2} ext{ m/s} \\ v_a = 1.5 ext{ m/s}

Now substitute vav_a back into (3) to find vbv_b: vb=1.5+2.5=4extm/sv_b = 1.5 + 2.5 = 4 ext{ m/s}

Thus, the speeds after the collision are:

  • Speed of A (vav_a) = 1.5 m/s
  • Speed of B (vbv_b) = 4 m/s.

Step 2

the loss in kinetic energy due to the collision

99%

104 rated

Answer

The initial kinetic energy (KE) before the collision can be calculated as:

KEi=12maua2+12mbub2KE_i = \frac{1}{2} m_a u_a^2 + \frac{1}{2} m_b u_b^2 where:

  • ma=4extkgm_a = 4 ext{ kg} (mass of A)
  • ua=3extm/su_a = 3 ext{ m/s} (initial speed of A)
  • mb=1extkgm_b = 1 ext{ kg} (mass of B)
  • ub=2extm/su_b = -2 ext{ m/s} (initial speed of B)

Calculating: KEi=12(4)(32)+12(1)(2)2=12(4)(9)+12(1)(4)=18+2=20extJKE_i = \frac{1}{2} (4)(3^2) + \frac{1}{2} (1)(-2)^2 \\ = \frac{1}{2} (4)(9) + \frac{1}{2} (1)(4) \\ = 18 + 2 = 20 ext{ J}

The final kinetic energy after the collision is: KEf=12mava2+12mbvb2KE_f = \frac{1}{2} m_a v_a^2 + \frac{1}{2} m_b v_b^2 Calculating: KEf=12(4)(1.52)+12(1)(42)=12(4)(2.25)+12(1)(16)=9+8=12.5extJKE_f = \frac{1}{2} (4)(1.5^2) + \frac{1}{2} (1)(4^2) \\ = \frac{1}{2} (4)(2.25) + \frac{1}{2} (1)(16) \\ = 9 + 8 = 12.5 ext{ J}

The loss in kinetic energy is then: ΔKE=KEiKEf=2012.5=7.5extJ\Delta KE = KE_i - KE_f = 20 - 12.5 = 7.5 ext{ J}

Step 3

the magnitude of the impulse imparted to B due to the collision

96%

101 rated

Answer

Impulse (I) can be calculated using the formula: I=m(vbub)I = m(v_b - u_b) where:

  • m=1extkgm = 1 ext{ kg} (mass of B)
  • ub=2extm/su_b = -2 ext{ m/s} (initial speed of B)
  • vb=4extm/sv_b = 4 ext{ m/s} (final speed of B)

Now substituting: I=1(4(2))=1(4+2)=1(6)=6extNsI = 1(4 - (-2)) = 1(4 + 2) = 1(6) = 6 ext{ Ns}

Thus, the magnitude of the impulse imparted to B is 6 Ns.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;