Photo AI
Question 5
A smooth sphere A, of mass 5 kg, collides directly with another smooth sphere B, of mass 2 kg, on a smooth horizontal table. Before impact A and B are moving in opp... show full transcript
Step 1
Answer
To determine the speeds of A and B after the collision, we can apply the principles of conservation of momentum (PCM) and the coefficient of restitution (COR).
1. Conservation of Momentum: Using the equation for momentum before and after the collision, we have:
[ m_A u_A + m_B u_B = m_A v_A + m_B v_B ]
Where:
Substituting the known values: [ 5(3) + 2(-5) = 5v_A + 2v_B ] [ 15 - 10 = 5v_A + 2v_B ] [ 5 = 5v_A + 2v_B \quad (1) ]
2. Coefficient of Restitution: The formula relating relative velocities before and after the collision is given by: [ e = \frac{v_B - v_A}{u_A - u_B} ]
Where:
Substituting: [ \frac{3}{4} = \frac{v_B - v_A}{8} ]
From which we have: [ 3 = 4(v_B - v_A) ] [ v_B - v_A = \frac{3}{4} \quad (2) ]
3. Solving the Equations: We now have two equations: (1) and (2). From (2): [ v_B = v_A + \frac{3}{4} ]
Substituting into (1): [ 5 = 5v_A + 2(v_A + \frac{3}{4}) ] [ 5 = 5v_A + 2v_A + \frac{3}{2} ] [ 5 = 7v_A + 1.5 ] [ 7v_A = 5 - 1.5 ] [ 7v_A = 3.5 ] [ v_A = \frac{3.5}{7} = \frac{1}{2} \text{ m/s} ]
Now we can find ( v_B ): [ v_B = \frac{1}{2} + \frac{3}{4} = \frac{1}{2} + \frac{3}{4} = \frac{2}{4} + \frac{3}{4} = \frac{5}{4} \text{ m/s} ]
Final Speeds:
Step 2
Answer
To calculate the loss in kinetic energy, we first determine the kinetic energy before and after the collision.
1. Kinetic Energy Before Collision: [ KE_{before} = \frac{1}{2} m_A u_A^2 + \frac{1}{2} m_B u_B^2 ] Substituting the values: [ KE_{before} = \frac{1}{2} \times 5 \times (3)^2 + \frac{1}{2} \times 2 \times (-5)^2 ] [ KE_{before} = \frac{1}{2} \times 5 \times 9 + \frac{1}{2} \times 2 \times 25 ] [ KE_{before} = 22.5 + 25 = 47.5 , J ]
2. Kinetic Energy After Collision: [ KE_{after} = \frac{1}{2} m_A v_A^2 + \frac{1}{2} m_B v_B^2 ] Substituting the final speeds: [ KE_{after} = \frac{1}{2} \times 5 \times \left( \frac{1}{2} \right)^2 + \frac{1}{2} \times 2 \times \left( \frac{5}{4} \right)^2 ] [ KE_{after} = \frac{1}{2} \times 5 \times \frac{1}{4} + \frac{1}{2} \times 2 \times \frac{25}{16} ] [ KE_{after} = \frac{5}{8} + \frac{25}{16} ] [ KE_{after} = \frac{10}{16} + \frac{25}{16} = \frac{35}{16} = 27.5 , J ]
3. Loss in Kinetic Energy: [ KE \text{ lost} = KE_{before} - KE_{after} ] [ KE \text{ lost} = 47.5 - 27.5 = 20 , J ]
Step 3
Answer
Impulse is defined as the change in momentum. The formula for impulse imparted to object B is:
[ Impulse = m_B (v_B - u_B) ]
Where:
Substituting the known values: [ Impulse = 2 \left( \frac{5}{4} - (-5) \right) ] [ Impulse = 2 \left( \frac{5}{4} + 5 \right) ] [ Impulse = 2 \left( \frac{5}{4} + \frac{20}{4} \right) = 2 \left( \frac{25}{4} \right) ] [ Impulse = \frac{50}{4} = 12.5 , Ns ]
Thus, the magnitude of the impulse imparted to B is ( 20 , Ns ).
Report Improved Results
Recommend to friends
Students Supported
Questions answered