Photo AI

If $$x^2 \frac{dy}{dx} - xy = 7y$$ and $y = 1$ when $x = 1$, find the value of $y$ when $x = 2$ - Leaving Cert Applied Maths - Question 10 - 2011

Question icon

Question 10

If---$$x^2-\frac{dy}{dx}---xy-=-7y$$---and-$y-=-1$-when-$x-=-1$,-find-the-value-of-$y$-when-$x-=-2$-Leaving Cert Applied Maths-Question 10-2011.png

If $$x^2 \frac{dy}{dx} - xy = 7y$$ and $y = 1$ when $x = 1$, find the value of $y$ when $x = 2$. (b) A particle travelling in a straight line has a deceleratio... show full transcript

Worked Solution & Example Answer:If $$x^2 \frac{dy}{dx} - xy = 7y$$ and $y = 1$ when $x = 1$, find the value of $y$ when $x = 2$ - Leaving Cert Applied Maths - Question 10 - 2011

Step 1

Find the value of $y$ when $x = 2$

96%

114 rated

Answer

We start with the equation:

x2dydxxy=7yx^2 \frac{dy}{dx} - xy = 7y

Rearranging gives:

dydx=7y+xyx2\frac{dy}{dx} = \frac{7y + xy}{x^2}

  1. Separate Variables:

Rearranging allows us to separate the variables:

dyy=7+xx2x2dx\frac{dy}{y} = \frac{7 + \frac{x}{x^2}}{x^2} dx

  1. Integrate:

Integrating both sides, we have:

1ydy=(7x2+1x)dx\int \frac{1}{y} dy = \int \left( \frac{7}{x^2} + \frac{1}{x} \right) dx

The integrals yield:

lny=7x+lnx+C\ln |y| = -\frac{7}{x} + \ln |x| + C

  1. Find the Constant C:

Using the condition y=1y = 1 when x=1x = 1:

ln(1)=7+ln(1)+CC=7\ln(1) = -7 + \ln(1) + C \Rightarrow C = 7

  1. Substitute C Back:

Thus, we have:

lny=7x+lnx+7\ln |y| = -\frac{7}{x} + \ln |x| + 7

  1. Calculate for x=2x = 2:

At x=2x = 2:

lny=72+ln(2)+7\ln |y| = -\frac{7}{2} + \ln(2) + 7

Solving this gives:

y=eln(2)+73.5=e4.193166.23y = e^{\ln(2) + 7 - 3.5} = e^{4.1931} \approx 66.23

Step 2

the distance travelled before it comes to rest

99%

104 rated

Answer

To find the distance travelled before the particle comes to rest, we use the equation of motion with deceleration:

  1. Rewrite the Deceleration Equation:

dvdt=(v2400+16)\frac{dv}{dt} = -\left( \frac{v^2}{400} + 16 \right)

  1. Separate Variables:

This can be written as:

dvv2400+80=dt\frac{dv}{\frac{v^2}{400} + 80} = -dt

  1. Integrate:

Integrating gives:

0401v2400+80dv=0Tdt\int_0^{40} \frac{1}{\frac{v^2}{400} + 80} dv = -\int_0^T dt

  1. Calculate Limits:

Using the substitution, we find the distance:

x=200ln(40+8080)=200ln(32)44.63extmx = 200ln\left(\frac{40 + 80}{80}\right) = 200\ln\left(\frac{3}{2}\right)\approx 44.63 ext{ m}

Step 3

the average speed of the particle during the motion

96%

101 rated

Answer

To find the average speed:

  1. Use Distance and Time:

Average speed is given by:

average speed=total distancetotal time\text{average speed} = \frac{\text{total distance}}{\text{total time}}

  1. Apply Values:

From our previous calculations:

Total distance = 44.63 m

Total time = 2.32 s

  1. Final Calculation:

Thus, the average speed is:

average speed=44.632.3219.24 m s1\text{average speed} = \frac{44.63}{2.32} \approx 19.24 \text{ m s}^{-1}

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;