SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home Leaving Cert Applied Maths Differential Equations If
$$x^3 y'\frac{dy}{dx} + y'\frac{dy}{dx} = 1$$
and $y = 0$ when $x = 0$, find the value of $x$ when $y = \frac{\pi}{2}$
If
$$x^3 y'\frac{dy}{dx} + y'\frac{dy}{dx} = 1$$
and $y = 0$ when $x = 0$, find the value of $x$ when $y = \frac{\pi}{2}$ - Leaving Cert Applied Maths - Question 10 - 2008 Question 10
View full question If
$$x^3 y'\frac{dy}{dx} + y'\frac{dy}{dx} = 1$$
and $y = 0$ when $x = 0$, find the value of $x$ when $y = \frac{\pi}{2}$.
(b) A train of mass 200 tonnes moves a... show full transcript
View marking scheme Worked Solution & Example Answer:If
$$x^3 y'\frac{dy}{dx} + y'\frac{dy}{dx} = 1$$
and $y = 0$ when $x = 0$, find the value of $x$ when $y = \frac{\pi}{2}$ - Leaving Cert Applied Maths - Question 10 - 2008
If $x^3 y'\frac{dy}{dx} + y'\frac{dy}{dx} = 1$ Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve this differential equation, we can separate the variables and integrate:
Rearranging gives us:
d y d x ( x 3 + 1 ) = 1 \frac{dy}{dx}(x^3 + 1) = 1 d x d y ( x 3 + 1 ) = 1
\n2. Thus:
d y = 1 x 3 + 1 d x dy = \frac{1}{x^3 + 1} dx d y = x 3 + 1 1 d x
Integrate both sides:
∫ d y = ∫ 1 x 3 + 1 d x \int dy = \int \frac{1}{x^3 + 1} dx ∫ d y = ∫ x 3 + 1 1 d x
The left side integrates to:
y = 1 2 ln ( 1 + x 3 ) + C y = \frac{1}{2} \ln(1 + x^3) + C y = 2 1 ln ( 1 + x 3 ) + C
Given that y = 0 y = 0 y = 0 when x = 0 x = 0 x = 0 , we can find C C C :
0 = 0 + C ⇒ C = 0 0 = 0 + C \Rightarrow C = 0 0 = 0 + C ⇒ C = 0
Therefore, the equation simplifies to:
y = 1 2 ln ( 1 + x 3 ) y = \frac{1}{2} \ln(1 + x^3) y = 2 1 ln ( 1 + x 3 )
Setting y = π 2 y = \frac{\pi}{2} y = 2 π allows us to solve for x x x :
$$\frac{1}{2} \ln(1 + x^3) = \frac{\pi}{2} \Rightarrow \ln(1 + x^3) = \pi \Rightarrow 1 + x^3 = e^{\pi} \Rightarrow x^3 = e^{\pi} - 1 \Rightarrow x = (e^{\pi} - 1)^{1/3} \approx 1.$
Find the value of P. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Start by using Newton's second law, applying it to this train system:
T = 1000 P v T = \frac{1000P}{v} T = v 1000 P
The force equals to the mass times acceleration, giving us:
F = 200000 ⋅ ( 8000 − v 3 500 v ) F = 200000 \cdot (\frac{8000 - v^3}{500v}) F = 200000 ⋅ ( 500 v 8000 − v 3 )
Therefore:
\n1000 P v − 400 v 2 = 200000 ⋅ 8000 − v 3 500 v \frac{1000P}{v} - 400v^2 = 200000 \cdot \frac{8000 - v^3}{500v} v 1000 P − 400 v 2 = 200000 ⋅ 500 v 8000 − v 3
Rearranging provides:
1000 P = 320000 − 400 v 3 1000P = 320000 - 400v^3 1000 P = 320000 − 400 v 3
Solving for P P P :
P = 3200. P = 3200. P = 3200.
The train travels a distance 69.07 m while its speed increases from 10 m/s to $v_1$ m/s. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
The work done over the distance relates to the change in kinetic energy by:
∫ 10 v 1 500 v 8000 − v 3 d s = ∫ 0 69.07 d x \int_{10}^{v_1} \frac{500v}{8000 - v^3} ds = \int_0^{69.07} dx ∫ 10 v 1 8000 − v 3 500 v d s = ∫ 0 69.07 d x
Consequently, we get:
∫ 10 v 1 500 8000 − v 3 d v = 69.07 \int_{10}^{v_1} \frac{500}{8000 - v^3} dv = 69.07 ∫ 10 v 1 8000 − v 3 500 d v = 69.07
Solving the integrals:
[ − 500 3 ln ( 8000 − v 3 ) ] 10 v 1 = 69.07 \left[ -\frac{500}{3} \ln(8000 - v^3) \right]_{10}^{v_1} = 69.07 [ − 3 500 ln ( 8000 − v 3 ) ] 10 v 1 = 69.07
Evaluating gives:
− 500 3 ln ( 8000 − v 1 3 ) + 500 3 ln ( 8000 − 1000 ) = 69.07 -\frac{500}{3} \ln(8000 - v_1^3) + \frac{500}{3} \ln(8000 - 1000) = 69.07 − 3 500 ln ( 8000 − v 1 3 ) + 3 500 ln ( 8000 − 1000 ) = 69.07
Thus we find:
ln ( 8000 − v 1 3 ) = 69.07 ⋅ 3 500 + ln ( 7000 ) \ln(8000 - v_1^3) = \frac{69.07 \cdot 3}{500} + \ln(7000) ln ( 8000 − v 1 3 ) = 500 69.07 ⋅ 3 + ln ( 7000 )
Evaluating results in:
v 1 = 15.0 m / s . v_1 = 15.0 m/s. v 1 = 15.0 m / s .
Join the Leaving Cert students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved