Photo AI

If $$x^3 y'\frac{dy}{dx} + y'\frac{dy}{dx} = 1$$ and $y = 0$ when $x = 0$, find the value of $x$ when $y = \frac{\pi}{2}$ - Leaving Cert Applied Maths - Question 10 - 2008

Question icon

Question 10

If--$$x^3-y'\frac{dy}{dx}-+-y'\frac{dy}{dx}-=-1$$--and-$y-=-0$-when-$x-=-0$,-find-the-value-of-$x$-when-$y-=-\frac{\pi}{2}$-Leaving Cert Applied Maths-Question 10-2008.png

If $$x^3 y'\frac{dy}{dx} + y'\frac{dy}{dx} = 1$$ and $y = 0$ when $x = 0$, find the value of $x$ when $y = \frac{\pi}{2}$. (b) A train of mass 200 tonnes moves a... show full transcript

Worked Solution & Example Answer:If $$x^3 y'\frac{dy}{dx} + y'\frac{dy}{dx} = 1$$ and $y = 0$ when $x = 0$, find the value of $x$ when $y = \frac{\pi}{2}$ - Leaving Cert Applied Maths - Question 10 - 2008

Step 1

If $x^3 y'\frac{dy}{dx} + y'\frac{dy}{dx} = 1$

96%

114 rated

Answer

To solve this differential equation, we can separate the variables and integrate:

  1. Rearranging gives us: dydx(x3+1)=1\frac{dy}{dx}(x^3 + 1) = 1 \n2. Thus: dy=1x3+1dxdy = \frac{1}{x^3 + 1} dx

  2. Integrate both sides: dy=1x3+1dx\int dy = \int \frac{1}{x^3 + 1} dx

  3. The left side integrates to: y=12ln(1+x3)+Cy = \frac{1}{2} \ln(1 + x^3) + C

  4. Given that y=0y = 0 when x=0x = 0, we can find CC: 0=0+CC=00 = 0 + C \Rightarrow C = 0

  5. Therefore, the equation simplifies to: y=12ln(1+x3)y = \frac{1}{2} \ln(1 + x^3)

  6. Setting y=π2y = \frac{\pi}{2} allows us to solve for xx: $$\frac{1}{2} \ln(1 + x^3) = \frac{\pi}{2} \Rightarrow \ln(1 + x^3) = \pi \Rightarrow 1 + x^3 = e^{\pi} \Rightarrow x^3 = e^{\pi} - 1 \Rightarrow x = (e^{\pi} - 1)^{1/3} \approx 1.$

Step 2

Find the value of P.

99%

104 rated

Answer

  1. Start by using Newton's second law, applying it to this train system: T=1000PvT = \frac{1000P}{v}

  2. The force equals to the mass times acceleration, giving us: F=200000(8000v3500v)F = 200000 \cdot (\frac{8000 - v^3}{500v})

  3. Therefore: \n1000Pv400v2=2000008000v3500v\frac{1000P}{v} - 400v^2 = 200000 \cdot \frac{8000 - v^3}{500v}

  4. Rearranging provides: 1000P=320000400v31000P = 320000 - 400v^3

  5. Solving for PP: P=3200.P = 3200.

Step 3

The train travels a distance 69.07 m while its speed increases from 10 m/s to $v_1$ m/s.

96%

101 rated

Answer

  1. The work done over the distance relates to the change in kinetic energy by: 10v1500v8000v3ds=069.07dx\int_{10}^{v_1} \frac{500v}{8000 - v^3} ds = \int_0^{69.07} dx

  2. Consequently, we get: 10v15008000v3dv=69.07\int_{10}^{v_1} \frac{500}{8000 - v^3} dv = 69.07

  3. Solving the integrals: [5003ln(8000v3)]10v1=69.07\left[ -\frac{500}{3} \ln(8000 - v^3) \right]_{10}^{v_1} = 69.07

  4. Evaluating gives: 5003ln(8000v13)+5003ln(80001000)=69.07-\frac{500}{3} \ln(8000 - v_1^3) + \frac{500}{3} \ln(8000 - 1000) = 69.07

  5. Thus we find: ln(8000v13)=69.073500+ln(7000)\ln(8000 - v_1^3) = \frac{69.07 \cdot 3}{500} + \ln(7000)

  6. Evaluating results in: v1=15.0m/s.v_1 = 15.0 m/s.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;