Photo AI

Find $a, b, c,$ and $d$, if $$\frac{(n+3)! (n+2)!}{(n+1)! (n+1)!} = a n^3 + b n^2 + c n + d,$$ where $a, b, c,$ and $d \in \mathbb{N}$. - Leaving Cert Mathematics - Question b

Question icon

Question b

Find-$a,-b,-c,$-and-$d$,-if--$$\frac{(n+3)!-(n+2)!}{(n+1)!-(n+1)!}-=-a-n^3-+-b-n^2-+-c-n-+-d,$$-where-$a,-b,-c,$-and-$d-\in-\mathbb{N}$.-Leaving Cert Mathematics-Question b.png

Find $a, b, c,$ and $d$, if $$\frac{(n+3)! (n+2)!}{(n+1)! (n+1)!} = a n^3 + b n^2 + c n + d,$$ where $a, b, c,$ and $d \in \mathbb{N}$.

Worked Solution & Example Answer:Find $a, b, c,$ and $d$, if $$\frac{(n+3)! (n+2)!}{(n+1)! (n+1)!} = a n^3 + b n^2 + c n + d,$$ where $a, b, c,$ and $d \in \mathbb{N}$. - Leaving Cert Mathematics - Question b

Step 1

$n = 0$

96%

114 rated

Answer

Substituting n=0n = 0: (0+3)!(0+2)!(0+1)!(0+1)!=3!2!1!1!=621=12.\frac{(0+3)! (0+2)!}{(0+1)! (0+1)!} = \frac{3! \cdot 2!}{1! \cdot 1!} = \frac{6 \cdot 2}{1} = 12. This gives us: a(0)3+b(0)2+c(0)+d=d=12.a(0)^3 + b(0)^2 + c(0) + d = d = 12. Thus, (d = 12).

Step 2

$n = 1$

99%

104 rated

Answer

Substituting n=1n = 1: (1+3)!(1+2)!(1+1)!(1+1)!=4!3!2!2!=24622=36.\frac{(1+3)! (1+2)!}{(1+1)! (1+1)!} = \frac{4! \cdot 3!}{2! \cdot 2!} = \frac{24 \cdot 6}{2 \cdot 2} = 36. This gives us: a(1)3+b(1)2+c(1)+d=a+b+c+12=36.a(1)^3 + b(1)^2 + c(1) + d = a + b + c + 12 = 36. Simplifying gives us the equation: a+b+c=24.a + b + c = 24.

Step 3

$n = 2$

96%

101 rated

Answer

Substituting n=2n = 2: (2+3)!(2+2)!(2+1)!(2+1)!=5!4!3!3!=1202466=80.\frac{(2+3)! (2+2)!}{(2+1)! (2+1)!} = \frac{5! \cdot 4!}{3! \cdot 3!} = \frac{120 \cdot 24}{6 \cdot 6} = 80. This gives us: a(2)3+b(2)2+c(2)+d=8a+4b+2c+12=80.a(2)^3 + b(2)^2 + c(2) + d = 8a + 4b + 2c + 12 = 80. Simplifying gives us the equation: 8a+4b+2c=68.8a + 4b + 2c = 68. Dividing through by 4 results in: 2a+b+0.5c=17.2a + b + 0.5c = 17.

Step 4

$n = 3$

98%

120 rated

Answer

Substituting n=3n = 3: (3+3)!(3+2)!(3+1)!(3+1)!=6!5!4!4!=7201202424=150.\frac{(3+3)! (3+2)!}{(3+1)! (3+1)!} = \frac{6! \cdot 5!}{4! \cdot 4!} = \frac{720 \cdot 120}{24 \cdot 24} = 150. This gives us: a(3)3+b(3)2+c(3)+d=27a+9b+3c+12=150.a(3)^3 + b(3)^2 + c(3) + d = 27a + 9b + 3c + 12 = 150. Simplifying gives us: 27a+9b+3c=138.27a + 9b + 3c = 138. Dividing through by 3 results in: 9a+3b+c=46.9a + 3b + c = 46.

Step 5

Solve the simultaneous equations

97%

117 rated

Answer

Now, we have the following system of equations to solve:

  1. a+b+c=24a + b + c = 24.
  2. 2a+b+0.5c=172a + b + 0.5c = 17.
  3. 9a+3b+c=469a + 3b + c = 46.

Using substitution or elimination methods can lead us to values for aa, bb, cc, and dd. After solving, we find:

  • a=1a = 1,
  • b=7b = 7,
  • c=16c = 16,
  • d=12d = 12.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;