Photo AI

Given that $ x - rac{3}{2} = rac{1}{2} imes rac{5 ext{√}128}{ ext{√}32} $, find the value of $ x $, where $ x ext{ } ext{ } ext{ } ext{} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \ \ A = \{\text{√}32k^{2}, \text{√}50k^{2}, \text{√}128k^{2}, \text{√}98k^{2} \} , where \ k ext{ } \in \mathbb{N} - Leaving Cert Mathematics - Question 6 - 2022

Question icon

Question 6

Given-that-$-x----rac{3}{2}-=--rac{1}{2}-imes--rac{5-ext{√}128}{-ext{√}32}-$,-find-the-value-of-$-x-$,-where-$-x--ext{-}--ext{-}--ext{-}--ext{}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}-\-\-A-=-\{\text{√}32k^{2},-\text{√}50k^{2},-\text{√}128k^{2},-\text{√}98k^{2}-\}-,-where-\-k--ext{-}-\in-\mathbb{N}-Leaving Cert Mathematics-Question 6-2022.png

Given that $ x - rac{3}{2} = rac{1}{2} imes rac{5 ext{√}128}{ ext{√}32} $, find the value of $ x $, where $ x ext{ } ext{ } ext{ } ext{} ext{ } ext{ } ext{... show full transcript

Worked Solution & Example Answer:Given that $ x - rac{3}{2} = rac{1}{2} imes rac{5 ext{√}128}{ ext{√}32} $, find the value of $ x $, where $ x ext{ } ext{ } ext{ } ext{} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \ \ A = \{\text{√}32k^{2}, \text{√}50k^{2}, \text{√}128k^{2}, \text{√}98k^{2} \} , where \ k ext{ } \in \mathbb{N} - Leaving Cert Mathematics - Question 6 - 2022

Step 1

Find the value of x

96%

114 rated

Answer

Starting with the equation:

xext32=ext1285xx - ext{√}32 = ext{√}128 - 5x

We rearrange to isolate x:

  1. Combine like terms:

    • x+5x=ext128+ext32x + 5x = ext{√}128 + ext{√}32
    • 6x=ext128+ext326x = ext{√}128 + ext{√}32
  2. Calculate the square roots individually:

    • ext128=8ext2 ext{√}128 = 8 ext{√}2
    • ext32=4ext2 ext{√}32 = 4 ext{√}2

Thus, 6x=8ext2+4ext26x = 8 ext{√}2 + 4 ext{√}2 6x=12ext26x = 12 ext{√}2

  1. Solve for x: x = rac{12 ext{√}2}{6} = 2 ext{√}2

Step 2

Show that the mean of A is equal to the median of set A

99%

104 rated

Answer

To find the values in set A:

  • A={32k2,50k2,128k2,98k2}A = \{\text{√}32k^{2}, \text{√}50k^{2}, \text{√}128k^{2}, \text{√}98k^{2}\}

Calculating each term:

  • 32k2=4k2\text{√}32k^{2} = 4k\text{√}2
  • 50k2=5k2\text{√}50k^{2} = 5k\text{√}2
  • 128k2=8k2\text{√}128k^{2} = 8k\text{√}2
  • 98k2=7k2\text{√}98k^{2} = 7k\text{√}2

Arrange the terms in ascending order:

  • 4k2,5k2,7k2,8k24k\text{√}2, 5k\text{√}2, 7k\text{√}2, 8k\text{√}2

Mean Calculation: Mean=(4k2+5k2+7k2+8k2)4=24k24=6k2\text{Mean} = \frac{(4k\text{√}2 + 5k\text{√}2 + 7k\text{√}2 + 8k\text{√}2)}{4} = \frac{24k\text{√}2}{4} = 6k\text{√}2

Median Calculation: For a set of four numbers, the median is given by: Median=(5k2+7k2)2=12k22=6k2\text{Median} = \frac{(5k\text{√}2 + 7k\text{√}2)}{2} = \frac{12k\text{√}2}{2} = 6k\text{√}2

Thus, the mean is equal to the median.

Step 3

Prove, using contradiction, that √2 is not a rational number

96%

101 rated

Answer

Assume that 2\text{√}2 is rational.

Then, we can express it as: 2=pq\text{√}2 = \frac{p}{q} where pp and qq are integers with no common factors.

Squaring both sides gives: 2=p2q2p2=2q22 = \frac{p^{2}}{q^{2}} \Rightarrow p^{2} = 2q^{2}

From this, we conclude that:

  1. p2p^{2} is even, so pp must also be even.
  2. Let p=2kp = 2k for some integer kk.
  3. Substituting back gives: (2k)2=2q24k2=2q2q2=2k2(2k)^{2} = 2q^{2} \Rightarrow 4k^{2} = 2q^{2} \Rightarrow q^{2} = 2k^{2}

This implies that:

  1. q2q^{2} is also even, hence qq must be even.

Since both p and q are even, this contradicts our assertion that they had no common factors. Therefore,: 2cannotberational.\text{√}2 cannot be rational.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;