Photo AI

Solve the simultaneous equations: a^2 - ab + b^2 = 3 a + 2b + 1 = 0 Find the set of all real values of $x$ for which \[ \frac{2x - 5}{x - 3} \leq \frac{5}{2} \] - Leaving Cert Mathematics - Question 1 - 2012

Question icon

Question 1

Solve-the-simultaneous-equations:--a^2---ab-+-b^2-=-3--a-+-2b-+-1-=-0--Find-the-set-of-all-real-values-of-$x$-for-which--\[-\frac{2x---5}{x---3}-\leq-\frac{5}{2}-\]-Leaving Cert Mathematics-Question 1-2012.png

Solve the simultaneous equations: a^2 - ab + b^2 = 3 a + 2b + 1 = 0 Find the set of all real values of $x$ for which \[ \frac{2x - 5}{x - 3} \leq \frac{5}{2} \]

Worked Solution & Example Answer:Solve the simultaneous equations: a^2 - ab + b^2 = 3 a + 2b + 1 = 0 Find the set of all real values of $x$ for which \[ \frac{2x - 5}{x - 3} \leq \frac{5}{2} \] - Leaving Cert Mathematics - Question 1 - 2012

Step 1

Solve the simultaneous equations: a^2 - ab + b^2 = 3 a + 2b + 1 = 0

96%

114 rated

Answer

  1. From the second equation, we can express aa in terms of bb:

    a=2b1a = -2b - 1

  2. Substitute this value of aa into the first equation:

    (2b1)2(2b1)b+b2=3(-2b - 1)^2 - (-2b - 1)b + b^2 = 3

  3. Expanding this expression gives:

    4b2+4b+1+2b2+b+b2=34b^2 + 4b + 1 + 2b^2 + b + b^2 = 3

    7b2+5b+13=07b^2 + 5b + 1 - 3 = 0

    7b2+5b2=07b^2 + 5b - 2 = 0

  4. Using the quadratic formula where b=5b = 5, a=7a = 7, and c=2c = -2:

    b=B±B24AC2A=5±5247(2)27b = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 7 \cdot (-2)}}{2 \cdot 7}

    =5±25+5614=5±8114 = \frac{-5 \pm \sqrt{25 + 56}}{14} = \frac{-5 \pm \sqrt{81}}{14}

    =5±914 = \frac{-5 \pm 9}{14}

  5. Thus, we have two potential solutions for bb:

    • b=414=27b = \frac{4}{14} = \frac{2}{7}
    • b=1414=1b = \frac{-14}{14} = -1
  6. Calculate aa for these values of bb:

    • If b=27b = \frac{2}{7}, then
      a=2(27)1=471=4777=117a = -2\left(\frac{2}{7}\right) - 1 = \frac{-4}{7} - 1 = \frac{-4}{7} - \frac{7}{7} = \frac{-11}{7}
    • If b=1b = -1, then a=2(1)1=21=1a = -2(-1) - 1 = 2 - 1 = 1
  7. Therefore, the solutions are:

    {b=27,a=117} or {b=1,a=1}\{b = \frac{2}{7}, a = \frac{-11}{7}\} \text{ or } \{b = -1, a = 1\}

Step 2

Find the set of all real values of $x$ for which \[ \frac{2x - 5}{x - 3} \leq \frac{5}{2} \]

99%

104 rated

Answer

  1. First, rearrange the inequality by multiplying through by (x3)(x - 3) (noting that we have to consider the sign of this expression):

    2x5x3(x3)52(x3)\frac{2x - 5}{x - 3} \cdot (x - 3) \leq \frac{5}{2} \cdot (x - 3)

    This results in:
    2x552(x3)2x - 5 \leq \frac{5}{2} (x - 3)

  2. Next, simplify the right side:

    2x552x1522x - 5 \leq \frac{5}{2}x - \frac{15}{2}

  3. Rearranging the inequality yields:

    (252)x152+5\left(2 - \frac{5}{2}\right)x \leq -\frac{15}{2} + 5

    (4252)x152+102\left(\frac{4}{2} - \frac{5}{2}\right)x \leq -\frac{15}{2} + \frac{10}{2}

    12x52-\frac{1}{2} x \leq -\frac{5}{2}

  4. Multiply both sides by -2 (reverse the inequality):

    x5x \geq 5

  5. Now, considering the other case where (x3)(x - 3) is negative, we rearrange similarly leading to:

    x<3x < 3

  6. Thus, the solution in interval notation is:

    x(,3)[5,)x \in (-\infty, 3) \cup [5, \infty).

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;