Photo AI
Question Question 1
Let y = 2x³ - 3x² - 1. Find \( \frac{dy}{dx} \). (b) Differentiate \( (2x^2 + 3x + 1)(x^3 - x + 2) \) with respect to x. (c) Let y = \( \frac{3x}{2x + 5} \) where ... show full transcript
Step 1
Step 2
Answer
We can use the product rule for differentiation, where if ( u = 2x^2 + 3x + 1 ) and ( v = x^3 - x + 2 ), then:
[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} ]
Calculating ( \frac{du}{dx} ) and ( \frac{dv}{dx} ):
[ \begin{align*} \frac{du}{dx} & = 4x + 3 \ \frac{dv}{dx} & = 3x^2 - 1 \end{align*} ]
Now, substituting back:
[ \frac{dy}{dx} = (2x^2 + 3x + 1)(3x^2 - 1) + (x^3 - x + 2)(4x + 3) ]
Expanding this will yield the final derivative.
Step 3
Answer
Given ( y = \frac{3x}{2x + 5} ), we can find ( \frac{dy}{dx} ) using the quotient rule:
[ \frac{dy}{dx} = \frac{(2x + 5)(3) - (3x)(2)}{(2x + 5)^2} ]
Substituting ( x = 0 ):
[ \frac{dy}{dx} = \frac{(2(0) + 5)(3) - (3(0))(2)}{(2(0) + 5)^2} = \frac{15}{25} = \frac{3}{5} ]
Therefore, the value is ( \frac{3}{5} ).
Report Improved Results
Recommend to friends
Students Supported
Questions answered