Photo AI

z = -\sqrt{3} + i, \text{ where } i^2 = -1 - Leaving Cert Mathematics - Question 2 - 2017

Question icon

Question 2

z-=--\sqrt{3}-+-i,-\text{-where-}-i^2-=--1-Leaving Cert Mathematics-Question 2-2017.png

z = -\sqrt{3} + i, \text{ where } i^2 = -1. (a) Use De Moivre's Theorem to write z^4 in the form \alpha + \beta \sqrt{c} i, \text{ where } \alpha, \beta, \text{ and... show full transcript

Worked Solution & Example Answer:z = -\sqrt{3} + i, \text{ where } i^2 = -1 - Leaving Cert Mathematics - Question 2 - 2017

Step 1

The complex number w is such that |w| = 3 and w makes an angle of 30° with the positive sense of the real axis. If t = zw, write t in its simplest form.

96%

114 rated

Answer

Given w is of the form: w=w(cos(30°)+isin(30°)).w = |w|\left(\cos(30°) + i\sin(30°)\right).
Since |w| = 3: w=3(cos(30°)+isin(30°))=3(32+i12)=332+i32.w = 3\left(\cos(30°) + i\sin(30°)\right) = 3\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = \frac{3\sqrt{3}}{2} + i\frac{3}{2}.

Next, we have: z=3+i.z = -\sqrt{3} + i.
Now, we calculate zw: zw=(3+i)(332+i32).zw = (-\sqrt{3} + i)\left(\frac{3\sqrt{3}}{2} + i\frac{3}{2}\right). Using the distributive property: zw=3332+(3)i32+i332+i232zw = -\sqrt{3}\cdot\frac{3\sqrt{3}}{2} + (-\sqrt{3})\cdot i\cdot\frac{3}{2} + i\cdot\frac{3\sqrt{3}}{2} + i^2\cdot\frac{3}{2}

Since i2=1i^2 = -1, we simplify: zw=92+(332)i+332i32zw = -\frac{9}{2} + (-\frac{3\sqrt{3}}{2})i + \frac{3\sqrt{3}}{2}i - \frac{3}{2}

Combining like terms: zw=9232=6.zw = -\frac{9}{2} - \frac{3}{2} = -6. Thus, in simplest form: t=6.t = -6.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;