Photo AI

(4 - 2i) = 0 + ki, where k ∈ ℤ, and $i^2 = -1$ - Leaving Cert Mathematics - Question 1 - 2021

Question icon

Question 1

(4---2i)-=-0-+-ki,-where-k-∈-ℤ,-and-$i^2-=--1$-Leaving Cert Mathematics-Question 1-2021.png

(4 - 2i) = 0 + ki, where k ∈ ℤ, and $i^2 = -1$. Find the value of k. (2 + 4i) (b) Find $\sqrt{-5 + 12i}$. Give both of your answers in the form $a + bi$, where $a,... show full transcript

Worked Solution & Example Answer:(4 - 2i) = 0 + ki, where k ∈ ℤ, and $i^2 = -1$ - Leaving Cert Mathematics - Question 1 - 2021

Step 1

Find the value of k.

96%

114 rated

Answer

To find the value of k, we begin by equating the real and imaginary parts of the equation:

42i=(2+4i)(0+ki)4 - 2i = (2 + 4i)(0 + ki).
We can expand the right-hand side:

=2ki+4(2)= 2ki + 4(-2).
This simplifies to:

=2ki8= 2ki - 8.

Now, separating the real and imaginary components:

  • Real part: 8=4-8 = 4 (which is not possible).
  • Imaginary part: 4k=24k = -2.

Thus, we solve for k:

k=12k = -\frac{1}{2}.

Step 2

Find $\sqrt{-5 + 12i}$.

99%

104 rated

Answer

To find the square root of 5+12i-5 + 12i, we start with the expression:

r(cos(θ)+isin(θ))\sqrt{r(cos(\theta) + i sin(\theta))}.
First, we determine the modulus, r:

r=(5)2+(12)2=25+144=169=13.r = \sqrt{(-5)^2 + (12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13.
Next, we need to find the argument, (\theta):

θ=tan1(125)=tan1(125)+π\theta = \tan^{-1}\left(\frac{12}{-5}\right) = \tan^{-1}(-\frac{12}{5}) + \pi.
Computing the argument gives us θ2.158\theta \approx 2.158.
Now we can express this in polar form:

13(cos(θ)+isin(θ))=13(cos(θ2)+isin(θ2))\sqrt{13(cos(\theta) + i sin(\theta))} = \sqrt{13}(cos(\frac{\theta}{2}) + i sin(\frac{\theta}{2})).
Calculating gives us:

You will find two roots: ±(3+2i)\pm (3 + 2i).

Step 3

Use De Moivre's theorem to find the three roots of $z^3 = -8$.

96%

101 rated

Answer

To find the roots of z3=8z^3 = -8, we first express -8 in polar form:

8=8(cos(π)+isin(π))-8 = 8(cos(\pi) + i sin(\pi)).
Using De Moivre's theorem, we can find the roots:

z=83(cos(π+2kπ3)+isin(π+2kπ3))z = \sqrt[3]{8}(cos(\frac{\pi + 2k\pi}{3}) + i sin(\frac{\pi + 2k\pi}{3})), where k = 0, 1, 2.
This results in:

For k=0k = 0:
z0=2(cos(π3)+isin(π3))z0=1+3iz_0 = 2(cos(\frac{\pi}{3}) + i sin(\frac{\pi}{3})) \rightarrow z_0 = 1 + \sqrt{3}i.
For k=1k = 1:
z1=2(cos(π)+isin(π))z1=2z_1 = 2(cos(\pi) + i sin(\pi)) \rightarrow z_1 = -2.
For k=2k = 2:
z2=2(cos(5π3)+isin(5π3))z2=13i.z_2 = 2(cos(\frac{5\pi}{3}) + i sin(\frac{5\pi}{3})) \rightarrow z_2 = 1 - \sqrt{3}i.
Thus, the roots are: 1+3i,2,13i1 + \sqrt{3}i, -2, 1 - \sqrt{3}i.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;