Now, we must show that it holds for n = k + 1:
(cosθ+isinθ)k+1=(cosθ+isinθ)k(cosθ+isinθ)
Using the assumption for k:
=(cos(kθ)+isin(kθ))(cosθ+isinθ)
Expanding using the distributive property gives:
=cos(kθ)cos(θ)−sin(kθ)sin(θ)+i(sin(kθ)cos(θ)+cos(kθ)sin(θ))
This simplifies to:
=cos((k+1)θ)+isin((k+1)θ)
Thus, the equation holds for k + 1.