Photo AI

3 + 2i is a root of $z^2 + pz + q = 0$, where $p, q \in \mathbb{R}$, and $i^2 = -1$ - Leaving Cert Mathematics - Question 5 - 2019

Question icon

Question 5

3-+-2i-is-a-root-of-$z^2-+-pz-+-q-=-0$,-where-$p,-q-\in-\mathbb{R}$,-and-$i^2-=--1$-Leaving Cert Mathematics-Question 5-2019.png

3 + 2i is a root of $z^2 + pz + q = 0$, where $p, q \in \mathbb{R}$, and $i^2 = -1$. Find the value of $p$ and the value of $q$. (b) $v = 2 - 2\sqrt{3}i$. Write $... show full transcript

Worked Solution & Example Answer:3 + 2i is a root of $z^2 + pz + q = 0$, where $p, q \in \mathbb{R}$, and $i^2 = -1$ - Leaving Cert Mathematics - Question 5 - 2019

Step 1

Find the values of $p$ and $q$

96%

114 rated

Answer

To find the values of pp and qq, we first note that if 3+2i3 + 2i is a root, its conjugate 32i3 - 2i is also a root. Using Vieta's formulas, we have:

  • The sum of the roots is given by 3+2i+(32i)=6p=6p=63 + 2i + (3 - 2i) = 6 \Rightarrow -p = 6 \Rightarrow p = -6
  • The product of the roots is given by (3+2i)(32i)=9+4=13q=13(3 + 2i)(3 - 2i) = 9 + 4 = 13 \Rightarrow q = 13

Step 2

Write $v$ in the form $r(cos \theta + i sin \theta)$

99%

104 rated

Answer

To express v=223iv = 2 - 2\sqrt{3}i in polar form:

  1. Calculate the modulus: r=v=22+(23)2=4+12=4r = |v| = \sqrt{2^2 + (-2\sqrt{3})^2} = \sqrt{4 + 12} = 4

  2. Calculate the argument: θ=arctan(232)=arctan(3)=300=5π3\theta = \arctan\left(\frac{-2\sqrt{3}}{2}\right) = \arctan(-\sqrt{3}) = 300^\circ = \frac{5\pi}{3}

Thus, ( v = 4 \left( \cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right) )

Step 3

Find the two possible values of $w$

96%

101 rated

Answer

Since w2=vw^2 = v, we apply De Moivre's theorem: w=4(cos(5π3+kπ)+isin(5π3+kπ)) for k=0,1w = \sqrt{4} \left( \cos\left(\frac{5\pi}{3} + k\pi\right) + i \sin\left(\frac{5\pi}{3} + k\pi\right) \right) \text{ for } k = 0, 1

For k=0k = 0: w=2(cos5π3+isin5π3)=2(12i32)=13iw = 2 \left( \cos\frac{5\pi}{3} + i \sin\frac{5\pi}{3} \right) = 2 \left( \frac{1}{2} - i \frac{\sqrt{3}}{2} \right) = 1 - \sqrt{3} i

For k=1k = 1: w=2(cos(5π3+π)+isin(5π3+π))=2(12+i32)=1+3iw = 2 \left( \cos\left(\frac{5\pi}{3} + \pi\right) + i \sin\left(\frac{5\pi}{3} + \pi\right) \right) = 2 \left( -\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = -1 + \sqrt{3} i

Thus, the two possible values of ww are:

  1. 13i1 - \sqrt{3} i
  2. 1+3i-1 + \sqrt{3} i

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;