Photo AI

Let $h(x) = ext{cos}(2x)$, where $x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 3 - 2018

Question icon

Question 3

Let-$h(x)-=--ext{cos}(2x)$,-where-$x-\in-\mathbb{R}$-Leaving Cert Mathematics-Question 3-2018.png

Let $h(x) = ext{cos}(2x)$, where $x \in \mathbb{R}$. A tangent is drawn to the graph of $h(x)$ at the point where $x = \frac{-\pi}{3}$. Find the angle that this... show full transcript

Worked Solution & Example Answer:Let $h(x) = ext{cos}(2x)$, where $x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 3 - 2018

Step 1

Find the angle that this tangent makes with the positive sense of the x-axis.

96%

114 rated

Answer

To find the angle, we first need the derivative of the function:
h(x)=2sin(2x).h'(x) = -2 \sin(2x).
At the point where x=π3x = \frac{-\pi}{3}:
h(π3)=2sin(2π3)=2(32)=3.h'\left(\frac{-\pi}{3}\right) = -2 \sin\left(-\frac{2\pi}{3}\right) = -2 \left(-\frac{\sqrt{3}}{2}\right) = \sqrt{3}.
Now we find the angle θ\theta:
tan(θ)=h(π3)=3.\tan(\theta) = h'\left(\frac{-\pi}{3}\right) = \sqrt{3}.
Thus,
θ=60.\theta = 60^\circ.
Since we are looking for the angle the tangent makes with the positive x-axis, we consider the angle measured positively, therefore:
θ=120.\theta = 120^\circ.

Step 2

Find the average value of $h(x)$ over the interval $0 \leq x \leq \frac{\pi}{4}$.

99%

104 rated

Answer

The average value of a function f(x)f(x) over an interval [a,b][a, b] is given by:
1baabf(x) dx.\frac{1}{b-a} \int_a^b f(x) \ dx.
For our case:
Average value of h(x)=1π400π4cos(2x) dx.\text{Average value of } h(x) = \frac{1}{\frac{\pi}{4} - 0} \int_0^{\frac{\pi}{4}} \cos(2x) \ dx.
This simplifies to:
4π0π4cos(2x) dx.\frac{4}{\pi} \int_0^{\frac{\pi}{4}} \cos(2x) \ dx.
The integral evaluates as follows:
cos(2x) dx=12sin(2x)+C.\int \cos(2x) \ dx = \frac{1}{2}\sin(2x) + C.
Now applying the limits:
[12sin(2x)]0π4=12(sin(π2)sin(0))=121=12.\left[\frac{1}{2}\sin(2x)\right]_0^{\frac{\pi}{4}} = \frac{1}{2} \left(\sin\left(\frac{\pi}{2}\right) - \sin(0)\right) = \frac{1}{2} \cdot 1 = \frac{1}{2}.
Putting it all together:
Average value=4π12=2π.\text{Average value} = \frac{4}{\pi} \cdot \frac{1}{2} = \frac{2}{\pi}.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;