Photo AI

Let $h(x) = ext{cos}(2x)$, where $x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 3 - 2018

Question icon

Question 3

Let-$h(x)-=--ext{cos}(2x)$,-where-$x-\in-\mathbb{R}$-Leaving Cert Mathematics-Question 3-2018.png

Let $h(x) = ext{cos}(2x)$, where $x \in \mathbb{R}$. A tangent is drawn to the graph of $h(x)$ at the point where $x = \frac{-\pi}{3}$. Find the angle that this... show full transcript

Worked Solution & Example Answer:Let $h(x) = ext{cos}(2x)$, where $x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 3 - 2018

Step 1

Find the derivative of $h(x)$

96%

114 rated

Answer

First, take the derivative of h(x)h(x). h(x)=2sin(2x)h'(x) = -2 \sin(2x)

Step 2

Evaluate the derivative at $x = \frac{-\pi}{3}$

99%

104 rated

Answer

Next, evaluate h(π3)h'\left( \frac{-\pi}{3} \right): h(π3)=2sin(2π3)=2sin(2π3)=2(32)=3h'\left( \frac{-\pi}{3} \right) = -2 \sin\left( 2 \cdot \frac{-\pi}{3} \right) = -2 \sin\left( -\frac{2\pi}{3} \right) = -2 \left( -\frac{\sqrt{3}}{2} \right) = \sqrt{3}

Step 3

Find the angle the tangent makes with the $x$-axis

96%

101 rated

Answer

The slope of the tangent is given by the derivative, which we found to be 3\sqrt{3}. The angle θ\theta can be found using the tangent function: tan(θ)=3\tan(\theta) = \sqrt{3} Thus, the angle: θ=60\theta = 60^\circ

Step 4

Calculate the average value of $h(x)$

98%

120 rated

Answer

To find the average value of h(x)h(x) over the interval 0xπ40 \leq x \leq \frac{\pi}{4}, we use the formula: Average=1baabh(x)dx\text{Average} = \frac{1}{b-a} \int_a^b h(x) \, dx Here, a=0a = 0 and b=π4b = \frac{\pi}{4}: Average=1π400π4cos(2x)dx\text{Average} = \frac{1}{\frac{\pi}{4} - 0} \int_0^{\frac{\pi}{4}} \cos(2x) \, dx

Step 5

Solve the integral

97%

117 rated

Answer

The integral of cos(2x)\cos(2x) is: cos(2x)dx=sin(2x)2\int \cos(2x) \, dx = \frac{\sin(2x)}{2} Thus, 0π4cos(2x)dx=[sin(2x)2]0π4=sin(π2)2sin(0)2=12\int_0^{\frac{\pi}{4}} \cos(2x) \, dx = \left[ \frac{\sin(2x)}{2} \right]_0^{\frac{\pi}{4}} = \frac{\sin(\frac{\pi}{2})}{2} - \frac{\sin(0)}{2} = \frac{1}{2}

Step 6

Finalize the average value calculation

97%

121 rated

Answer

Substituting back, we get: Average=1π412=4π12=2π\text{Average} = \frac{1}{\frac{\pi}{4}} \cdot \frac{1}{2} = \frac{4}{\pi} \cdot \frac{1}{2} = \frac{2}{\pi}

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;