Photo AI

(x + 4) is a factor of $f(x) = x^3 + qx^2 - 22x + 56$, where $x \in \mathbb{R}$ and $q \in \mathbb{Z}$ - Leaving Cert Mathematics - Question b - 2021

Question icon

Question b

(x-+-4)-is-a-factor-of-$f(x)-=-x^3-+-qx^2---22x-+-56$,-where-$x-\in-\mathbb{R}$-and-$q-\in-\mathbb{Z}$-Leaving Cert Mathematics-Question b-2021.png

(x + 4) is a factor of $f(x) = x^3 + qx^2 - 22x + 56$, where $x \in \mathbb{R}$ and $q \in \mathbb{Z}$. Show that $q = -5$, and find the three roots of $f(x)$. Show... show full transcript

Worked Solution & Example Answer:(x + 4) is a factor of $f(x) = x^3 + qx^2 - 22x + 56$, where $x \in \mathbb{R}$ and $q \in \mathbb{Z}$ - Leaving Cert Mathematics - Question b - 2021

Step 1

Show that $q = -5$

96%

114 rated

Answer

To confirm that (x+4)(x + 4) is a factor of the polynomial f(x)f(x), we need to perform polynomial long division. First, we substitute x=4x = -4 into the function:

f(4)=(4)3+q(4)222(4)+56f(-4) = (-4)^3 + q(-4)^2 - 22(-4) + 56

Calculating the known values gives us:

f(4)=64+16q+88+56f(-4) = -64 + 16q + 88 + 56

Simplifying this, we get:

f(4)=16q+80f(-4) = 16q + 80

Setting this equal to zero for (x+4)(x + 4) to be a factor, we have:

16q+80=016q=80q=5.16q + 80 = 0 \Rightarrow 16q = -80 \Rightarrow q = -5.

Step 2

Find the three roots of $f(x)$

99%

104 rated

Answer

Now that we have q=5q = -5, we can write the function as:

f(x)=x35x222x+56.f(x) = x^3 - 5x^2 - 22x + 56.

Next, we perform polynomial long division by dividing f(x)f(x) by (x+4)(x + 4):

  1. Divide the leading term: x3÷x=x2x^3 ÷ x = x^2
  2. Multiply (x+4)(x + 4) by x2x^2: x3+4x2x^3 + 4x^2
  3. Subtract from f(x)f(x): f(x)(x3+4x2)=5x24x222x+56=9x222x+56.f(x) - (x^3 + 4x^2) = -5x^2 - 4x^2 - 22x + 56 = -9x^2 - 22x + 56.
  4. Divide the leading term: 9x2÷x=9x-9x^2 ÷ x = -9x.
  5. Multiply (x+4)(x + 4) by 9x-9x: 9x236x-9x^2 - 36x.
  6. Subtract: 9x222x+56(9x236x)=14x+56.-9x^2 - 22x + 56 - (-9x^2 - 36x) = 14x + 56.
  7. Divide the leading term: 14x÷x=1414x ÷ x = 14.
  8. Multiply (x+4)(x + 4) by 1414: 14x+5614x + 56.
  9. Subtract: 14x+56(14x+56)=0.14x + 56 - (14x + 56) = 0.

Thus, we have:

f(x)=(x+4)(x29x+14).f(x) = (x + 4)(x^2 - 9x + 14).

Next, we find the roots of the quadratic x29x+14x^2 - 9x + 14. Using the quadratic formula:

x=b±b24ac2a=9±(9)24(1)(14)2(1)=9±81562=9±252=9±52.x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{9 \pm \sqrt{(-9)^2 - 4(1)(14)}}{2(1)} = \frac{9 \pm \sqrt{81 - 56}}{2} = \frac{9 \pm \sqrt{25}}{2} = \frac{9 \pm 5}{2}.

Calculating the roots:

  1. x=142=7.x = \frac{14}{2} = 7.
  2. x=42=2.x = \frac{4}{2} = 2.
  3. The three roots of f(x)f(x) are therefore (4,2,7).(4, 2, 7).

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;