Photo AI

The diagram shows the triangles $BCD$ and $ABD$, with some measurements given - Leaving Cert Mathematics - Question 5 - 2015

Question icon

Question 5

The-diagram-shows-the-triangles-$BCD$-and-$ABD$,-with-some-measurements-given-Leaving Cert Mathematics-Question 5-2015.png

The diagram shows the triangles $BCD$ and $ABD$, with some measurements given. (a) (i) Find $|BC|$, correct to two decimal places. (ii) Find the area of the triang... show full transcript

Worked Solution & Example Answer:The diagram shows the triangles $BCD$ and $ABD$, with some measurements given - Leaving Cert Mathematics - Question 5 - 2015

Step 1

Find $|BC|$, correct to two decimal places.

96%

114 rated

Answer

To find BC|BC|, we can use the sine rule:

BCsin(42)=16sin(110)\frac{|BC|}{\sin(42^\circ)} = \frac{16}{\sin(110^\circ)}

Rearranging gives:

BC=16sin(42)sin(110)|BC| = \frac{16 \cdot \sin(42^\circ)}{\sin(110^\circ)}

Calculating:

  1. Calculate sin(42)0.6691\sin(42^\circ) \approx 0.6691 and sin(110)0.9397\sin(110^\circ) \approx 0.9397.
  2. Substitute into the equation:

BC160.66910.939711.39 m|BC| \approx \frac{16 \cdot 0.6691}{0.9397} \approx 11.39 \text{ m}

Thus, BC=11.39|BC| = 11.39 m.

Step 2

Find the area of the triangle $BCD$, correct to two decimal places.

99%

104 rated

Answer

To find the area AA of triangle BCDBCD, we can use the formula:

A=12absin(c)A = \frac{1}{2} \cdot a \cdot b \cdot \sin(c)

Where:

  • a=10a = 10 m
  • b=BC11.39b = |BC| \approx 11.39 m
  • c=BDC=28=180(42+110)c = \angle BDC = 28^\circ = 180^\circ - (42^\circ + 110^\circ)

Thus:

A=121011.39sin(28)A = \frac{1}{2} \cdot 10 \cdot 11.39 \cdot \sin(28^\circ)

Calculating:

  1. sin(28)0.4695\sin(28^\circ) \approx 0.4695
  2. Substitute into the equation:

A121011.390.469542.78 m2A \approx \frac{1}{2} \cdot 10 \cdot 11.39 \cdot 0.4695 \approx 42.78 \text{ m}^2

Therefore, the area of triangle BCDBCD is approximately 42.7842.78 m².

Step 3

Find $|AB|$, correct to two decimal places.

96%

101 rated

Answer

To find AB|AB|, we will also use the cosine rule. The triangle ABDABD implies:

AB2=AD2+BD22ADBDcos(75)|AB|^2 = |AD|^2 + |BD|^2 - 2 |AD| |BD| \cos(75^\circ)

Given that:

  • AD=10|AD| = 10 m
  • BD=16|BD| = 16 m
  • 75=180(63+42)75^\circ = 180^\circ - (63^\circ + 42^\circ)

Thus:

  1. Plugging into the cosine rule:

AB2=102+1622(10)(16)cos(75)|AB|^2 = 10^2 + 16^2 - 2(10)(16)\cos(75^\circ)

  1. With cos(75)0.2588\cos(75^\circ) \approx 0.2588, we have:

AB2=100+256320(0.2588)|AB|^2 = 100 + 256 - 320(0.2588)

  1. Calculating further:

AB2=35682.816=273.178|AB|^2 = 356 - 82.816 = 273.178 4. Finally, taking the square root:

AB273.17816.53 m|AB| \approx \sqrt{273.178} \approx 16.53 \text{ m}

Therefore, AB=16.53|AB| = 16.53 m.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;