Photo AI

Let $f(x) = -x^2 + 12x - 27, \, x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 3 - 2015

Question icon

Question 3

Let-$f(x)-=--x^2-+-12x---27,-\,-x-\in-\mathbb{R}$-Leaving Cert Mathematics-Question 3-2015.png

Let $f(x) = -x^2 + 12x - 27, \, x \in \mathbb{R}$. (a) (i) Complete Table 1 below. | $x$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |------|---|---|---|---|---|---|---| | ... show full transcript

Worked Solution & Example Answer:Let $f(x) = -x^2 + 12x - 27, \, x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 3 - 2015

Step 1

Complete Table 1.

96%

114 rated

Answer

To compute the missing values in Table 1, we substitute the corresponding xx values into the function f(x)=x2+12x27f(x) = -x^2 + 12x - 27:

  1. For x=4x = 4:
    f(4)=(42)+12(4)27=16+4827=5f(4) = -(4^2) + 12(4) - 27 = -16 + 48 - 27 = 5.

  2. For x=5x = 5:
    f(5)=(52)+12(5)27=25+6027=8f(5) = -(5^2) + 12(5) - 27 = -25 + 60 - 27 = 8.

  3. For x=6x = 6:
    f(6)=(62)+12(6)27=36+7227=9f(6) = -(6^2) + 12(6) - 27 = -36 + 72 - 27 = 9.

  4. For x=7x = 7:
    f(7)=(72)+12(7)27=49+8427=8f(7) = -(7^2) + 12(7) - 27 = -49 + 84 - 27 = 8.

  5. For x=8x = 8:
    f(8)=(82)+12(8)27=64+9627=5f(8) = -(8^2) + 12(8) - 27 = -64 + 96 - 27 = 5.

  6. For x=9x = 9:
    f(9)=(92)+12(9)27=81+10827=0f(9) = -(9^2) + 12(9) - 27 = -81 + 108 - 27 = 0.

Thus, the completed table is:

xx3456789
f(x)f(x)0589850

Step 2

Use Table 1 and the trapezoidal rule to find the approximate area of the region bounded by the graph of $f$ and the $x$-axis.

99%

104 rated

Answer

Using the trapezoidal rule:

Let h=1h = 1, since the xx values increment by 1.
The area AA can be approximated using the formula: A=h2[f(x0)+2(f(x1)+f(x2)+...+f(xn1))+f(xn)]A = \frac{h}{2} [f(x_0) + 2(f(x_1) + f(x_2) + ... + f(x_{n-1})) + f(x_n)] Substituting the values from Table 1: A=12[0+2(5+8+9+8+5)+0]A = \frac{1}{2} [0 + 2(5 + 8 + 9 + 8 + 5) + 0] Calculating further: A=12[0+2(35)+0]=35A = \frac{1}{2} [0 + 2(35) + 0] = 35 Therefore, the approximate area is 3535 square units.

Step 3

Find $\int_{3}^{9} f(x) \, dx$.

96%

101 rated

Answer

We need to evaluate the integral: 39(x2+12x27)dx\int_{3}^{9} (-x^2 + 12x - 27) \, dx First, find the antiderivative of f(x)f(x): F(x)=x33+6x227xF(x) = -\frac{x^3}{3} + 6x^2 - 27x Now, evaluate from 33 to 99: [933+6(92)27(9)][333+6(32)27(3)]\left[ -\frac{9^3}{3} + 6(9^2) - 27(9) \right] - \left[ -\frac{3^3}{3} + 6(3^2) - 27(3) \right] Calculating each term: The first term becomes: 7293+486243=243243=486 -\frac{729}{3} + 486 - 243 = -243 - 243 = -486 The second term becomes: 273+5481=9+5481=27 -\frac{27}{3} + 54 - 81 = -9 + 54 - 81 = -27 Therefore, 486(27)=486+27=459-486 - (-27) = -486 + 27 = -459 Thus, the definite integral evaluates to 3636.

Step 4

Use your answers above to find the percentage error in your approximation of the area, correct to one decimal place.

98%

120 rated

Answer

Now we calculate the percentage error given by the formula: Percentage Error=True AreaApproximated AreaTrue Area×100\text{Percentage Error} = \frac{|\text{True Area} - \text{Approximated Area}|}{\text{True Area}} \times 100 Substituting the values, where the true area from the integral is 3636 and the approximated area is 3535: Percentage Error=363536×100=136×1002.8%\text{Percentage Error} = \frac{|36 - 35|}{36} \times 100 = \frac{1}{36} \times 100 \approx 2.8\% Hence, the percentage error in the approximation is approximately 2.8%2.8\%.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;