To prove the equation, we can use the sum-to-product formula for cosines and sines. First, apply the sum-to-product formula:
cosx+cosy=2cos(2x+y)cos(2x−y)
and
sinx−siny=2sin(2x+y)cos(2x−y)
in our case:
- Set x=7A and y=A, so we have:
cos7A+cosA=2cos(28A)cos(26A)=2cos4Acos3A
and
sin7A−sinA=2sin(28A)cos(26A)=2sin4Acos3A
Substituting these into the original equation:
2sin4Acos3A2cos4Acos3A=sin4Acos4A=cot4A.
Now, we can apply the identity cotx=sinxcosx to rewrite:
cot4A⋅cot3A1=cot3A
Which establishes the equation.