Photo AI

Show that $$\frac{\cos 7A + \cos A}{\sin 7A - \sin A} = \cot 3A.$$ Given that $\cos 2\theta = \frac{1}{9}$ find $\cos \theta$ in the form $\pm \frac{\sqrt{a}}{b}$ where $a, b \in \mathbb{N}$. - Leaving Cert Mathematics - Question 3 - 2016

Question icon

Question 3

Show-that--$$\frac{\cos-7A-+-\cos-A}{\sin-7A---\sin-A}-=-\cot-3A.$$---Given-that-$\cos-2\theta-=-\frac{1}{9}$-find-$\cos-\theta$-in-the-form-$\pm-\frac{\sqrt{a}}{b}$-where-$a,-b-\in-\mathbb{N}$.-Leaving Cert Mathematics-Question 3-2016.png

Show that $$\frac{\cos 7A + \cos A}{\sin 7A - \sin A} = \cot 3A.$$ Given that $\cos 2\theta = \frac{1}{9}$ find $\cos \theta$ in the form $\pm \frac{\sqrt{a}}{b}$... show full transcript

Worked Solution & Example Answer:Show that $$\frac{\cos 7A + \cos A}{\sin 7A - \sin A} = \cot 3A.$$ Given that $\cos 2\theta = \frac{1}{9}$ find $\cos \theta$ in the form $\pm \frac{\sqrt{a}}{b}$ where $a, b \in \mathbb{N}$. - Leaving Cert Mathematics - Question 3 - 2016

Step 1

Show that $$\frac{\cos 7A + \cos A}{\sin 7A - \sin A} = \cot 3A.$$

96%

114 rated

Answer

To prove the equation, we can use the sum-to-product formula for cosines and sines. First, apply the sum-to-product formula:

cosx+cosy=2cos(x+y2)cos(xy2)\cos x + \cos y = 2 \cos \left( \frac{x+y}{2} \right) \cos \left( \frac{x-y}{2} \right)

and

sinxsiny=2sin(x+y2)cos(xy2)\sin x - \sin y = 2 \sin \left( \frac{x+y}{2} \right) \cos \left( \frac{x-y}{2} \right)

in our case:

  • Set x=7Ax = 7A and y=Ay = A, so we have:

cos7A+cosA=2cos(8A2)cos(6A2)=2cos4Acos3A\cos 7A + \cos A = 2 \cos \left( \frac{8A}{2} \right) \cos \left( \frac{6A}{2} \right) = 2 \cos 4A \cos 3A

and

sin7AsinA=2sin(8A2)cos(6A2)=2sin4Acos3A\sin 7A - \sin A = 2 \sin \left( \frac{8A}{2} \right) \cos \left( \frac{6A}{2} \right) = 2 \sin 4A \cos 3A

Substituting these into the original equation:

2cos4Acos3A2sin4Acos3A=cos4Asin4A=cot4A.\frac{2 \cos 4A \cos 3A}{2 \sin 4A \cos 3A} = \frac{\cos 4A}{\sin 4A} = \cot 4A.

Now, we can apply the identity cotx=cosxsinx\cot x = \frac{\cos x}{\sin x} to rewrite:

cot4A1cot3A=cot3A\cot 4A \cdot \frac{1}{\cot 3A} = \cot 3A

Which establishes the equation.

Step 2

Given that $\cos 2\theta = \frac{1}{9}$ find $\cos \theta$ in the form $\pm \frac{\sqrt{a}}{b}$.

99%

104 rated

Answer

We start with the double angle formula for cosine:

cos2θ=2cos2θ1.\cos 2\theta = 2\cos^2 \theta - 1.

Substituting the known value:

19=2cos2θ1\frac{1}{9} = 2\cos^2 \theta - 1

Solving for cos2θ\cos^2 \theta:

2cos2θ=1+19    2cos2θ=9+19=1092\cos^2 \theta = 1 + \frac{1}{9} \implies 2\cos^2 \theta = \frac{9 + 1}{9} = \frac{10}{9}

Now, dividing by 2:

cos2θ=1018=59.\cos^2 \theta = \frac{10}{18} = \frac{5}{9}.

Taking the square root gives:

cosθ=±59=±53.\cos \theta = \pm \sqrt{\frac{5}{9}} = \pm \frac{\sqrt{5}}{3}.

So, in the required form, we have:

  • a=5a = 5 and b=3b = 3.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;