SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home Leaving Cert Mathematics Trigonometry Let $h(x) = ext{cos}(2x)$, where $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \
A tangent is drawn to the graph of $h(x)$ at the point where $x = \frac{ ext{π}}{3}$.\
Find the angle that this tangent makes with the positive sense of the $x$-axis.\
\
Find the average value of $h(x)$ over the interval $0 \leq x \leq \frac{ ext{π}}{4}$, $x \in ext{R}$.\
Give your answer in terms of π.
Let $h(x) = ext{cos}(2x)$, where $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \
A tangent is drawn to the graph of $h(x)$ at the point where $x = \frac{ ext{π}}{3}$.\
Find the angle that this tangent makes with the positive sense of the $x$-axis.\
\
Find the average value of $h(x)$ over the interval $0 \leq x \leq \frac{ ext{π}}{4}$, $x \in ext{R}$.\
Give your answer in terms of π. - Leaving Cert Mathematics - Question 3 - 2018 Question 3
View full question Let $h(x) = ext{cos}(2x)$, where $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ... show full transcript
View marking scheme Worked Solution & Example Answer:Let $h(x) = ext{cos}(2x)$, where $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \
A tangent is drawn to the graph of $h(x)$ at the point where $x = \frac{ ext{π}}{3}$.\
Find the angle that this tangent makes with the positive sense of the $x$-axis.\
\
Find the average value of $h(x)$ over the interval $0 \leq x \leq \frac{ ext{π}}{4}$, $x \in ext{R}$.\
Give your answer in terms of π. - Leaving Cert Mathematics - Question 3 - 2018
Find the angle that this tangent makes with the positive sense of the x-axis. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find the angle of the tangent line at x = π 3 x = \frac{\pi}{3} x = 3 π , we first need to compute the derivative of h ( x ) h(x) h ( x ) .\
Differentiate h ( x ) h(x) h ( x ) :
The function is given as h ( x ) = cos ( 2 x ) h(x) = \cos(2x) h ( x ) = cos ( 2 x ) .
Differentiating, we get:
[ h'(x) = -2 \sin(2x) ]\
Evaluate the derivative at x = π 3 x = \frac{\pi}{3} x = 3 π :
Substitute x = π 3 x = \frac{\pi}{3} x = 3 π :
[ h'\left(\frac{\pi}{3}\right) = -2 \sin\left(2 \cdot \frac{\pi}{3}\right) = -2 \sin\left(\frac{2\pi}{3}\right) = -2 \cdot \frac{\sqrt{3}}{2} = -\sqrt{3} ]\
Find the angle :
The angle θ \theta θ that the tangent makes with the positive x x x -axis can be found using the tangent function:
[ \tan(\theta) = \frac{-\sqrt{3}}{1} ]
Therefore,
[ \theta = 120^\circ ]
The tangent line makes an angle of 12 0 ∘ 120^\circ 12 0 ∘ with the positive sense of the x x x -axis.
Find the average value of h(x) over the interval 0 ≤ x ≤ π/4, x ∈ R. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
The average value of a function f ( x ) f(x) f ( x ) over the interval [ a , b ] [a, b] [ a , b ] is given by the formula:
[ \text{Average} = \frac{1}{b-a} \int_a^b f(x) , dx ]
In this case:
f ( x ) = h ( x ) = cos ( 2 x ) f(x) = h(x) = \cos(2x) f ( x ) = h ( x ) = cos ( 2 x )
a = 0 a = 0 a = 0 , b = π 4 b = \frac{\pi}{4} b = 4 π .
Set up the integral :
[ \text{Average} = \frac{1}{\frac{\pi}{4} - 0} \int_0^{\frac{\pi}{4}} \cos(2x) , dx ]
This simplifies to:
[ = \frac{4}{\pi} \int_0^{\frac{\pi}{4}} \cos(2x) , dx ]
Compute the integral :
The integral of cos ( 2 x ) \cos(2x) cos ( 2 x ) is:
[ \int \cos(2x) , dx = \frac{1}{2} \sin(2x) + C ]
Evaluating the definite integral:
[ \int_0^{\frac{\pi}{4}} \cos(2x) , dx = \left[ \frac{1}{2} \sin(2x) \right]_0^{\frac{\pi}{4}} = \frac{1}{2} \left( \sin\left(\frac{\pi}{2}\right) - \sin(0) \right) = \frac{1}{2} (1 - 0) = \frac{1}{2} ]
Final calculation :
Plugging back into the average formula:
[ \text{Average} = \frac{4}{\pi} \cdot \frac{1}{2} = \frac{2}{\pi} ]
Therefore, the average value of h ( x ) h(x) h ( x ) over the specified interval is 2 π \frac{2}{\pi} π 2 .
Join the Leaving Cert students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved