Photo AI

Let $h(x) = ext{cos}(2x)$, where $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \ A tangent is drawn to the graph of $h(x)$ at the point where $x = \frac{ ext{π}}{3}$.\ Find the angle that this tangent makes with the positive sense of the $x$-axis.\ \ Find the average value of $h(x)$ over the interval $0 \leq x \leq \frac{ ext{π}}{4}$, $x \in ext{R}$.\ Give your answer in terms of π. - Leaving Cert Mathematics - Question 3 - 2018

Question icon

Question 3

Let-$h(x)-=--ext{cos}(2x)$,-where-$x--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}--ext{-}-\--A-tangent-is-drawn-to-the-graph-of-$h(x)$-at-the-point-where-$x-=-\frac{-ext{π}}{3}$.\--Find-the-angle-that-this-tangent-makes-with-the-positive-sense-of-the-$x$-axis.\--\--Find-the-average-value-of-$h(x)$-over-the-interval-$0-\leq-x-\leq-\frac{-ext{π}}{4}$,-$x-\in--ext{R}$.\--Give-your-answer-in-terms-of-π.-Leaving Cert Mathematics-Question 3-2018.png

Let $h(x) = ext{cos}(2x)$, where $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ... show full transcript

Worked Solution & Example Answer:Let $h(x) = ext{cos}(2x)$, where $x ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } \ A tangent is drawn to the graph of $h(x)$ at the point where $x = \frac{ ext{π}}{3}$.\ Find the angle that this tangent makes with the positive sense of the $x$-axis.\ \ Find the average value of $h(x)$ over the interval $0 \leq x \leq \frac{ ext{π}}{4}$, $x \in ext{R}$.\ Give your answer in terms of π. - Leaving Cert Mathematics - Question 3 - 2018

Step 1

Find the angle that this tangent makes with the positive sense of the x-axis.

96%

114 rated

Answer

To find the angle of the tangent line at x=π3x = \frac{\pi}{3}, we first need to compute the derivative of h(x)h(x).\

  1. Differentiate h(x)h(x):

    The function is given as h(x)=cos(2x)h(x) = \cos(2x).
    Differentiating, we get:
    [ h'(x) = -2 \sin(2x) ]\

  2. Evaluate the derivative at x=π3x = \frac{\pi}{3}:

    Substitute x=π3x = \frac{\pi}{3}:
    [ h'\left(\frac{\pi}{3}\right) = -2 \sin\left(2 \cdot \frac{\pi}{3}\right) = -2 \sin\left(\frac{2\pi}{3}\right) = -2 \cdot \frac{\sqrt{3}}{2} = -\sqrt{3} ]\

  3. Find the angle:

    The angle θ\theta that the tangent makes with the positive xx-axis can be found using the tangent function:
    [ \tan(\theta) = \frac{-\sqrt{3}}{1} ]
    Therefore,
    [ \theta = 120^\circ ]
    The tangent line makes an angle of 120120^\circ with the positive sense of the xx-axis.

Step 2

Find the average value of h(x) over the interval 0 ≤ x ≤ π/4, x ∈ R.

99%

104 rated

Answer

The average value of a function f(x)f(x) over the interval [a,b][a, b] is given by the formula:
[ \text{Average} = \frac{1}{b-a} \int_a^b f(x) , dx ]
In this case:

  • f(x)=h(x)=cos(2x)f(x) = h(x) = \cos(2x)
  • a=0a = 0, b=π4b = \frac{\pi}{4}.
  1. Set up the integral:

    [ \text{Average} = \frac{1}{\frac{\pi}{4} - 0} \int_0^{\frac{\pi}{4}} \cos(2x) , dx ]

    This simplifies to:
    [ = \frac{4}{\pi} \int_0^{\frac{\pi}{4}} \cos(2x) , dx ]

  2. Compute the integral:

    The integral of cos(2x)\cos(2x) is:
    [ \int \cos(2x) , dx = \frac{1}{2} \sin(2x) + C ]
    Evaluating the definite integral:
    [ \int_0^{\frac{\pi}{4}} \cos(2x) , dx = \left[ \frac{1}{2} \sin(2x) \right]_0^{\frac{\pi}{4}} = \frac{1}{2} \left( \sin\left(\frac{\pi}{2}\right) - \sin(0) \right) = \frac{1}{2} (1 - 0) = \frac{1}{2} ]

  3. Final calculation:

    Plugging back into the average formula:
    [ \text{Average} = \frac{4}{\pi} \cdot \frac{1}{2} = \frac{2}{\pi} ]
    Therefore, the average value of h(x)h(x) over the specified interval is 2π\frac{2}{\pi}.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;